65edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author xenwolf and made on 2016-12-29 17:51:20 UTC.
- The original revision id was 602901538.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
---- =<span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;">65 tone equal temperament</span>= **//65edo//** divides the [[octave]] into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]]. In the [[7-limit]], there are two different maps; the first is <65 103 151 182|, [[tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide. 65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]]. 65edo contains [[13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [[https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded|Rubble: a Xenuke Unfolded]]. =Intervals= ||~ [[Degree]] ||~ Size ([[cent|Cents]]) || ||= 0 ||> 0.0000 || ||= 1 ||> 18.4615 || ||= 2 ||> 36.9231 || ||= 3 ||> 55.3846 || ||= 4 ||> 73.8462 || ||= 5 ||> 92.3077 || ||= 6 ||> 110.7692 || ||= 7 ||> 129.2308 || ||= 8 ||> 147.6923 || ||= 9 ||> 166.1538 || ||= 10 ||> 184.6154 || ||= 11 ||> 203.0769 || ||= 12 ||> 221.5385 || ||= 13 ||> 240.0000 || ||= 14 ||> 258.4615 || ||= 15 ||> 276.9231 || ||= 16 ||> 295.3846 || ||= 17 ||> 313.8462 || ||= 18 ||> 332.3077 || ||= 19 ||> 350.7692 || ||= 20 ||> 369.2308 || ||= 21 ||> 387.6923 || ||= 22 ||> 406.1538 || ||= 23 ||> 424.6154 || ||= 24 ||> 443.0769 || ||= 25 ||> 461.5385 || ||= 26 ||> 480.0000 || ||= 27 ||> 498.4615 || ||= 28 ||> 516.9231 || ||= 29 ||> 535.3846 || ||= 30 ||> 553.8462 || ||= 31 ||> 572.3077 || ||= 32 ||> 590.7692 || ||= 33 ||> 609.2308 || ||= 34 ||> 627.6923 || ||= 35 ||> 646.1538 || ||= 36 ||> 664.6154 || ||= 37 ||> 683.0769 || ||= 38 ||> 701.5385 || ||= 39 ||> 720.0000 || ||= 40 ||> 738.4615 || ||= 41 ||> 756.9231 || ||= 42 ||> 775.3846 || ||= 43 ||> 793.8462 || ||= 44 ||> 812.3077 || ||= 45 ||> 830.7692 || ||= 46 ||> 849.2308 || ||= 47 ||> 867.6923 || ||= 48 ||> 886.1538 || ||= 49 ||> 904.6154 || ||= 50 ||> 923.0769 || ||= 51 ||> 941.5385 || ||= 52 ||> 960.0000 || ||= 53 ||> 978.4615 || ||= 54 ||> 996.9231 || ||= 55 ||> 1015.3846 || ||= 56 ||> 1033.8462 || ||= 57 ||> 1052.3077 || ||= 58 ||> 1070.7692 || ||= 59 ||> 1089.2308 || ||= 60 ||> 1107.6923 || ||= 61 ||> 1126.1538 || ||= 62 ||> 1144.6154 || ||= 63 ||> 1163.0769 || ||= 64 ||> 1181.5385 || ||= 65 ||> 1200.0000 || =Scales= [[photia7]] [[photia12]]
Original HTML content:
<html><head><title>65edo</title></head><body><hr /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x65 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;">65 tone equal temperament</span></h1> <br /> <strong><em>65edo</em></strong> divides the <a class="wiki_link" href="/octave">octave</a> into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the <a class="wiki_link" href="/schisma">schisma</a>, 32805/32768, the <a class="wiki_link" href="/sensipent%20comma">sensipent comma</a>, 78732/78125, and the <a class="wiki_link" href="/wuerschmidt%20comma">wuerschmidt comma</a>. In the <a class="wiki_link" href="/7-limit">7-limit</a>, there are two different maps; the first is <65 103 151 182|, <a class="wiki_link" href="/tempering%20out">tempering out</a> 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the <a class="wiki_link" href="/5-limit">5-limit</a> over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit <a class="wiki_link" href="/wuerschmidt%20temperament">wuerschmidt temperament</a> (wurschmidt and worschmidt) these two mappings provide.<br /> <br /> 65edo approximates the intervals <a class="wiki_link" href="/3_2">3/2</a>, <a class="wiki_link" href="/5_4">5/4</a>, <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/19_16">19/16</a> well, so that it does a good job representing the 2.3.5.11.19 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. To this one may want to add 13/8 and 17/16, giving the <a class="wiki_link" href="/19-limit">19-limit</a> no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*65 subgroup</a> 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as <a class="wiki_link" href="/130edo">130edo</a>.<br /> <br /> 65edo contains <a class="wiki_link" href="/13edo">13edo</a> as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see <a class="wiki_link_ext" href="https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded" rel="nofollow">Rubble: a Xenuke Unfolded</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h1> <table class="wiki_table"> <tr> <th><a class="wiki_link" href="/Degree">Degree</a><br /> </th> <th>Size (<a class="wiki_link" href="/cent">Cents</a>)<br /> </th> </tr> <tr> <td style="text-align: center;">0<br /> </td> <td style="text-align: right;">0.0000<br /> </td> </tr> <tr> <td style="text-align: center;">1<br /> </td> <td style="text-align: right;">18.4615<br /> </td> </tr> <tr> <td style="text-align: center;">2<br /> </td> <td style="text-align: right;">36.9231<br /> </td> </tr> <tr> <td style="text-align: center;">3<br /> </td> <td style="text-align: right;">55.3846<br /> </td> </tr> <tr> <td style="text-align: center;">4<br /> </td> <td style="text-align: right;">73.8462<br /> </td> </tr> <tr> <td style="text-align: center;">5<br /> </td> <td style="text-align: right;">92.3077<br /> </td> </tr> <tr> <td style="text-align: center;">6<br /> </td> <td style="text-align: right;">110.7692<br /> </td> </tr> <tr> <td style="text-align: center;">7<br /> </td> <td style="text-align: right;">129.2308<br /> </td> </tr> <tr> <td style="text-align: center;">8<br /> </td> <td style="text-align: right;">147.6923<br /> </td> </tr> <tr> <td style="text-align: center;">9<br /> </td> <td style="text-align: right;">166.1538<br /> </td> </tr> <tr> <td style="text-align: center;">10<br /> </td> <td style="text-align: right;">184.6154<br /> </td> </tr> <tr> <td style="text-align: center;">11<br /> </td> <td style="text-align: right;">203.0769<br /> </td> </tr> <tr> <td style="text-align: center;">12<br /> </td> <td style="text-align: right;">221.5385<br /> </td> </tr> <tr> <td style="text-align: center;">13<br /> </td> <td style="text-align: right;">240.0000<br /> </td> </tr> <tr> <td style="text-align: center;">14<br /> </td> <td style="text-align: right;">258.4615<br /> </td> </tr> <tr> <td style="text-align: center;">15<br /> </td> <td style="text-align: right;">276.9231<br /> </td> </tr> <tr> <td style="text-align: center;">16<br /> </td> <td style="text-align: right;">295.3846<br /> </td> </tr> <tr> <td style="text-align: center;">17<br /> </td> <td style="text-align: right;">313.8462<br /> </td> </tr> <tr> <td style="text-align: center;">18<br /> </td> <td style="text-align: right;">332.3077<br /> </td> </tr> <tr> <td style="text-align: center;">19<br /> </td> <td style="text-align: right;">350.7692<br /> </td> </tr> <tr> <td style="text-align: center;">20<br /> </td> <td style="text-align: right;">369.2308<br /> </td> </tr> <tr> <td style="text-align: center;">21<br /> </td> <td style="text-align: right;">387.6923<br /> </td> </tr> <tr> <td style="text-align: center;">22<br /> </td> <td style="text-align: right;">406.1538<br /> </td> </tr> <tr> <td style="text-align: center;">23<br /> </td> <td style="text-align: right;">424.6154<br /> </td> </tr> <tr> <td style="text-align: center;">24<br /> </td> <td style="text-align: right;">443.0769<br /> </td> </tr> <tr> <td style="text-align: center;">25<br /> </td> <td style="text-align: right;">461.5385<br /> </td> </tr> <tr> <td style="text-align: center;">26<br /> </td> <td style="text-align: right;">480.0000<br /> </td> </tr> <tr> <td style="text-align: center;">27<br /> </td> <td style="text-align: right;">498.4615<br /> </td> </tr> <tr> <td style="text-align: center;">28<br /> </td> <td style="text-align: right;">516.9231<br /> </td> </tr> <tr> <td style="text-align: center;">29<br /> </td> <td style="text-align: right;">535.3846<br /> </td> </tr> <tr> <td style="text-align: center;">30<br /> </td> <td style="text-align: right;">553.8462<br /> </td> </tr> <tr> <td style="text-align: center;">31<br /> </td> <td style="text-align: right;">572.3077<br /> </td> </tr> <tr> <td style="text-align: center;">32<br /> </td> <td style="text-align: right;">590.7692<br /> </td> </tr> <tr> <td style="text-align: center;">33<br /> </td> <td style="text-align: right;">609.2308<br /> </td> </tr> <tr> <td style="text-align: center;">34<br /> </td> <td style="text-align: right;">627.6923<br /> </td> </tr> <tr> <td style="text-align: center;">35<br /> </td> <td style="text-align: right;">646.1538<br /> </td> </tr> <tr> <td style="text-align: center;">36<br /> </td> <td style="text-align: right;">664.6154<br /> </td> </tr> <tr> <td style="text-align: center;">37<br /> </td> <td style="text-align: right;">683.0769<br /> </td> </tr> <tr> <td style="text-align: center;">38<br /> </td> <td style="text-align: right;">701.5385<br /> </td> </tr> <tr> <td style="text-align: center;">39<br /> </td> <td style="text-align: right;">720.0000<br /> </td> </tr> <tr> <td style="text-align: center;">40<br /> </td> <td style="text-align: right;">738.4615<br /> </td> </tr> <tr> <td style="text-align: center;">41<br /> </td> <td style="text-align: right;">756.9231<br /> </td> </tr> <tr> <td style="text-align: center;">42<br /> </td> <td style="text-align: right;">775.3846<br /> </td> </tr> <tr> <td style="text-align: center;">43<br /> </td> <td style="text-align: right;">793.8462<br /> </td> </tr> <tr> <td style="text-align: center;">44<br /> </td> <td style="text-align: right;">812.3077<br /> </td> </tr> <tr> <td style="text-align: center;">45<br /> </td> <td style="text-align: right;">830.7692<br /> </td> </tr> <tr> <td style="text-align: center;">46<br /> </td> <td style="text-align: right;">849.2308<br /> </td> </tr> <tr> <td style="text-align: center;">47<br /> </td> <td style="text-align: right;">867.6923<br /> </td> </tr> <tr> <td style="text-align: center;">48<br /> </td> <td style="text-align: right;">886.1538<br /> </td> </tr> <tr> <td style="text-align: center;">49<br /> </td> <td style="text-align: right;">904.6154<br /> </td> </tr> <tr> <td style="text-align: center;">50<br /> </td> <td style="text-align: right;">923.0769<br /> </td> </tr> <tr> <td style="text-align: center;">51<br /> </td> <td style="text-align: right;">941.5385<br /> </td> </tr> <tr> <td style="text-align: center;">52<br /> </td> <td style="text-align: right;">960.0000<br /> </td> </tr> <tr> <td style="text-align: center;">53<br /> </td> <td style="text-align: right;">978.4615<br /> </td> </tr> <tr> <td style="text-align: center;">54<br /> </td> <td style="text-align: right;">996.9231<br /> </td> </tr> <tr> <td style="text-align: center;">55<br /> </td> <td style="text-align: right;">1015.3846<br /> </td> </tr> <tr> <td style="text-align: center;">56<br /> </td> <td style="text-align: right;">1033.8462<br /> </td> </tr> <tr> <td style="text-align: center;">57<br /> </td> <td style="text-align: right;">1052.3077<br /> </td> </tr> <tr> <td style="text-align: center;">58<br /> </td> <td style="text-align: right;">1070.7692<br /> </td> </tr> <tr> <td style="text-align: center;">59<br /> </td> <td style="text-align: right;">1089.2308<br /> </td> </tr> <tr> <td style="text-align: center;">60<br /> </td> <td style="text-align: right;">1107.6923<br /> </td> </tr> <tr> <td style="text-align: center;">61<br /> </td> <td style="text-align: right;">1126.1538<br /> </td> </tr> <tr> <td style="text-align: center;">62<br /> </td> <td style="text-align: right;">1144.6154<br /> </td> </tr> <tr> <td style="text-align: center;">63<br /> </td> <td style="text-align: right;">1163.0769<br /> </td> </tr> <tr> <td style="text-align: center;">64<br /> </td> <td style="text-align: right;">1181.5385<br /> </td> </tr> <tr> <td style="text-align: center;">65<br /> </td> <td style="text-align: right;">1200.0000<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales</h1> <a class="wiki_link" href="/photia7">photia7</a><br /> <a class="wiki_link" href="/photia12">photia12</a></body></html>