208edt

Revision as of 10:29, 3 October 2024 by BudjarnLambeth (talk | contribs) (Intro intervals harmonics)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 207edt 208edt 209edt →
Prime factorization 24 × 13
Step size 9.14401 ¢ 
Octave 131\208edt (1197.87 ¢)
Consistency limit 4
Distinct consistency limit 4

208 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 208edt or 208ed3), is a nonoctave tuning system that divides the interval of 3/1 into 208 equal parts of about 9.14 ¢ each. Each step represents a frequency ratio of 31/208, or the 208th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.14 6.25
2 18.29 12.5
3 27.43 18.75 63/62
4 36.58 25 47/46, 49/48
5 45.72 31.25
6 54.86 37.5
7 64.01 43.75
8 73.15 50
9 82.3 56.25 43/41
10 91.44 62.5 39/37, 58/55
11 100.58 68.75
12 109.73 75
13 118.87 81.25
14 128.02 87.5
15 137.16 93.75
16 146.3 100 62/57
17 155.45 106.25
18 164.59 112.5 11/10
19 173.74 118.75 21/19
20 182.88 125 10/9
21 192.02 131.25 19/17
22 201.17 137.5
23 210.31 143.75 35/31
24 219.46 150
25 228.6 156.25
26 237.74 162.5
27 246.89 168.75 15/13
28 256.03 175 29/25, 51/44
29 265.18 181.25
30 274.32 187.5 41/35
31 283.46 193.75
32 292.61 200
33 301.75 206.25
34 310.9 212.5
35 320.04 218.75
36 329.18 225 52/43
37 338.33 231.25 45/37, 62/51
38 347.47 237.5 11/9
39 356.62 243.75 43/35, 70/57
40 365.76 250 21/17
41 374.9 256.25 41/33
42 384.05 262.5
43 393.19 268.75 69/55
44 402.34 275 29/23
45 411.48 281.25 52/41
46 420.62 287.5 51/40
47 429.77 293.75 50/39
48 438.91 300 58/45
49 448.06 306.25 57/44
50 457.2 312.5 43/33
51 466.34 318.75
52 475.49 325
53 484.63 331.25 41/31
54 493.78 337.5
55 502.92 343.75
56 512.06 350 39/29
57 521.21 356.25 50/37
58 530.35 362.5
59 539.5 368.75
60 548.64 375 70/51
61 557.78 381.25 69/50
62 566.93 387.5 43/31, 68/49
63 576.07 393.75 60/43
64 585.22 400
65 594.36 406.25 31/22, 55/39
66 603.5 412.5 17/12
67 612.65 418.75 47/33, 57/40
68 621.79 425 63/44
69 630.94 431.25
70 640.08 437.5
71 649.23 443.75
72 658.37 450 60/41
73 667.51 456.25
74 676.66 462.5
75 685.8 468.75 52/35, 55/37
76 694.95 475
77 704.09 481.25
78 713.23 487.5
79 722.38 493.75 41/27
80 731.52 500
81 740.67 506.25 23/15
82 749.81 512.5 54/35
83 758.95 518.75 31/20
84 768.1 525
85 777.24 531.25 47/30, 58/37
86 786.39 537.5 52/33, 63/40
87 795.53 543.75 19/12
88 804.67 550 35/22, 43/27
89 813.82 556.25
90 822.96 562.5 37/23
91 832.11 568.75
92 841.25 575
93 850.39 581.25
94 859.54 587.5
95 868.68 593.75
96 877.83 600
97 886.97 606.25
98 896.11 612.5 52/31
99 905.26 618.75
100 914.4 625 39/23
101 923.55 631.25
102 932.69 637.5 12/7
103 941.83 643.75 31/18
104 950.98 650
105 960.12 656.25 47/27, 54/31
106 969.27 662.5 7/4
107 978.41 668.75
108 987.55 675 23/13
109 996.7 681.25
110 1005.84 687.5
111 1014.99 693.75
112 1024.13 700 47/26
113 1033.27 706.25
114 1042.42 712.5
115 1051.56 718.75
116 1060.71 725
117 1069.85 731.25
118 1078.99 737.5 69/37
119 1088.14 743.75
120 1097.28 750 66/35
121 1106.43 756.25 36/19
122 1115.57 762.5 40/21
123 1124.71 768.75
124 1133.86 775 52/27
125 1143 781.25 60/31
126 1152.15 787.5 35/18
127 1161.29 793.75 45/23
128 1170.43 800
129 1179.58 806.25
130 1188.72 812.5
131 1197.87 818.75
132 1207.01 825
133 1216.15 831.25
134 1225.3 837.5
135 1234.44 843.75
136 1243.59 850 41/20
137 1252.73 856.25
138 1261.87 862.5
139 1271.02 868.75
140 1280.16 875 44/21
141 1289.31 881.25 40/19
142 1298.45 887.5 36/17
143 1307.59 893.75 66/31
144 1316.74 900
145 1325.88 906.25 43/20
146 1335.03 912.5
147 1344.17 918.75 50/23
148 1353.31 925
149 1362.46 931.25
150 1371.6 937.5
151 1380.75 943.75
152 1389.89 950 29/13
153 1399.03 956.25
154 1408.18 962.5
155 1417.32 968.75
156 1426.47 975
157 1435.61 981.25
158 1444.75 987.5
159 1453.9 993.75 44/19
160 1463.04 1000
161 1472.19 1006.25
162 1481.33 1012.5 40/17
163 1490.47 1018.75
164 1499.62 1025 69/29
165 1508.76 1031.25 55/23
166 1517.91 1037.5
167 1527.05 1043.75
168 1536.19 1050 17/7
169 1545.34 1056.25
170 1554.48 1062.5 27/11
171 1563.63 1068.75 37/15
172 1572.77 1075
173 1581.91 1081.25
174 1591.06 1087.5
175 1600.2 1093.75
176 1609.35 1100
177 1618.49 1106.25
178 1627.63 1112.5
179 1636.78 1118.75
180 1645.92 1125 44/17
181 1655.07 1131.25 13/5
182 1664.21 1137.5
183 1673.35 1143.75
184 1682.5 1150
185 1691.64 1156.25
186 1700.79 1162.5
187 1709.93 1168.75 51/19
188 1719.07 1175 27/10
189 1728.22 1181.25 19/7
190 1737.36 1187.5 30/11
191 1746.51 1193.75
192 1755.65 1200
193 1764.79 1206.25
194 1773.94 1212.5
195 1783.08 1218.75
196 1792.23 1225
197 1801.37 1231.25
198 1810.51 1237.5 37/13
199 1819.66 1243.75
200 1828.8 1250
201 1837.95 1256.25
202 1847.09 1262.5
203 1856.23 1268.75
204 1865.38 1275
205 1874.52 1281.25 62/21
206 1883.67 1287.5
207 1892.81 1293.75
208 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 208edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.13 +0.00 -4.27 +2.61 -2.13 -3.83 +2.74 +0.00 +0.48 +0.06 -4.27
Relative (%) -23.3 +0.0 -46.7 +28.6 -23.3 -41.9 +30.0 +0.0 +5.2 +0.7 -46.7
Steps
(reduced)
131
(131)
208
(0)
262
(54)
305
(97)
339
(131)
368
(160)
394
(186)
416
(0)
436
(20)
454
(38)
470
(54)
Approximation of harmonics in 208edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.46 +3.18 +2.61 +0.61 -3.76 -2.13 -4.30 -1.66 -3.83 -2.07 +3.27
Relative (%) +37.9 +34.8 +28.6 +6.6 -41.2 -23.3 -47.0 -18.1 -41.9 -22.6 +35.8
Steps
(reduced)
486
(70)
500
(84)
513
(97)
525
(109)
536
(120)
547
(131)
557
(141)
567
(151)
576
(160)
585
(169)
594
(178)