← 5940edo 5941edo 5942edo →
Prime factorization 13 × 457
Step size 0.201986 ¢ 
Fifth 3475\5941 (701.902 ¢)
Semitones (A1:m2) 561:448 (113.3 ¢ : 90.49 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

Approximation of odd harmonics in 5941edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
Error Absolute (¢) -0.0530 +0.0859 -0.1001 +0.0961 -0.0976 -0.0631 +0.0329 +0.0774 +0.0127 +0.0489 -0.0973 -0.0302 +0.0431 -0.0535 +0.0242 +0.0514 -0.0142 -0.0732 +0.0859 -0.0437 -0.0887 -0.0200 +0.0379 +0.0018 +0.0244 +0.0858 -0.0117 -0.0403 +0.0440 +0.0989
Relative (%) -26.2 +42.5 -49.6 +47.6 -48.3 -31.2 +16.3 +38.3 +6.3 +24.2 -48.2 -15.0 +21.3 -26.5 +12.0 +25.5 -7.0 -36.2 +42.5 -21.6 -43.9 -9.9 +18.8 +0.9 +12.1 +42.5 -5.8 -20.0 +21.8 +48.9
Steps
(reduced)
9416
(3475)
13795
(1913)
16678
(4796)
18833
(1010)
20552
(2729)
21984
(4161)
23211
(5388)
24284
(520)
25237
(1473)
26095
(2331)
26874
(3110)
27589
(3825)
28249
(4485)
28861
(5097)
29433
(5669)
29969
(264)
30473
(768)
30949
(1244)
31401
(1696)
31829
(2124)
32237
(2532)
32627
(2922)
33000
(3295)
33357
(3652)
33700
(3995)
34030
(4325)
34347
(4642)
34653
(4948)
34949
(5244)
35235
(5530)

As the zeta valley edo after 79edo, it approximates prime harmonics with very high errors. In particular, the 7th, 9th, 11th and 23rd harmonics are off by nearly half a step. In light of this, 5941edo can be seen as excelling in the 2.92.72.112.232 subgroup. Otherwise, it is strong in the 2.45.35.49.19.(31.51) subgroup.

Rather fittingly, it has a consistency limit of 3.