4096edo
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
Theory
4096edo is consistent in the 15-odd-limit, although with a large error on the 7th harmonic. It has the highest consistency limit than any power of two edo before it. In higher limits, the best subgroup for 4096edo is 2.3.7.11.13.37.43.
In the 11-limit, it is a tuning for the Van Gogh temperament. In the 13-limit, it tempers out 6656/6655, 9801/9800, 67392/67375, 105644/105625. In the higher 2.3.7.11.13.37.43 subgroup it tempers out the superparticular comma 15093/15092.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.002 | +0.112 | +0.022 | +0.049 | -0.000 | -0.073 | +0.143 | +0.144 | -0.085 | -0.114 |
Relative (%) | +0.0 | -0.6 | +38.3 | +7.4 | +16.8 | -0.1 | -24.8 | +48.9 | +49.0 | -29.0 | -38.8 | |
Steps (reduced) |
4096 (0) |
6492 (2396) |
9511 (1319) |
11499 (3307) |
14170 (1882) |
15157 (2869) |
16742 (358) |
17400 (1016) |
18529 (2145) |
19898 (3514) |
20292 (3908) |
Subsets and supersets
4096edo is the 12th power of two edo, and has subset edos 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048.