193edo: Difference between revisions

Improve intro and theory
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''193 equal divisions of the octave''' ('''193edo'''), or the '''193(-tone) equal temperament''' ('''193tet''', '''193et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 193 parts of about 6.22 [[cent]]s each.
{{EDO intro|193}}


== Theory ==
== Theory ==
193edo provides the [[optimal patent val]] for the [[sqrtphi]] temperament in the 13-, 17- and 19-limits, and for the 13-limit [[Swetismic temperaments #Minos|minos]] and [[Mirkwai family #Indra|vish]] temperaments. It is the 44th [[prime edo]].
193edo provides the [[optimal patent val]] for the [[sqrtphi]] temperament in the 13-, 17- and 19-limit, and for the 13-limit [[Swetismic temperaments #Minos|minos]] and [[Mirkwai family #Indra|vish]] temperaments.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|193}}
{{Harmonics in equal|193|columns=11}}
 
=== Miscellaneous properties ===
193edo is the 44th [[prime edo]].


== Regular temperament properties ==
== Regular temperament properties ==
Line 82: Line 85:
| 99.48
| 99.48
| 18/17
| 18/17
| [[Quindromeda family#Quintakwai|Quintakwai]]/[[Quindromeda family#Quintakwoid|Quintakwoid]]
| [[Quindromeda family#Quintakwai|Quintakwai]] / [[Quindromeda family#Quintakwoid|quintakwoid]]
|-
|-
| 1
| 1
Line 133: Line 136:
|}
|}


==Scales==
== Scales ==
*Approximation of sqrt (π): '''159\193''' (988.60104 cents), and of φ: '''134\193''' (833.16062 cents), both inside in the [[7L 2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9
*Approximation of sqrt (π): '''159\193''' (988.60104 cents), and of φ: '''134\193''' (833.16062 cents), both inside in the [[7L 2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9