User:Moremajorthanmajor/3L 1s (perfect fifth-equivalent): Difference between revisions
Created page with "Revision as of 00:01, 15 July 2022 (edit) Moremajorthanmajor (talk | contribs) (Undo revision 93402 by Moremajorthanmajor ([[User talk:Moremajorthanmajor|talk]) Tags: Removed..." |
No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox MOS | {{Infobox MOS | ||
| Name = Diatonic/Angel | |||
| Name = Diatonic | |||
| Equave = 3/2 | | Equave = 3/2 | ||
| nLargeSteps = 3 | | nLargeSteps = 3 | ||
| nSmallSteps = 1 | | nSmallSteps = 1 | ||
| Equalized = 2 | | Equalized = 2 | ||
| Paucitonic = 1 | | Paucitonic = 1 | ||
| Pattern = LLLs | | Pattern = LLLs | ||
}}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). | }}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). | ||
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents). | The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents). | ||
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. P | In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. P | ||
[[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. | |||
[[Basic]] | |||
==Notation== | ==Notation== | ||
− | − | ||
There are 3 main ways to notate the diatonic scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used. | There are 3 main ways to notate the diatonic scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Cents | Cents | ||
! colspan="3" |Notation | ! colspan="3" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
!Semisoft | !Semisoft | ||
!Basic | !Basic | ||
!Semihard | !Semihard | ||
!Hard | !Hard | ||
!Superhard | !Superhard | ||
|- | |- | ||
!Diatonic | !Diatonic | ||
!Napoli | !Napoli | ||
!Bijou | !Bijou | ||
!~15edf | !~15edf | ||
!~11edf | !~11edf | ||
!~18edf | !~18edf | ||
!~7edf | !~7edf | ||
!~17edf | !~17edf | ||
!~10edf | !~10edf | ||
!~13edf | !~13edf | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|F# | |F# | ||
|0#, D# | |0#, D# | ||
|1\15 | |1\15 | ||
46.153… | 46.153… | ||
|1\11 | |1\11 | ||
63.157… | 63.157… | ||
|2\18 | |2\18 | ||
77.419… | 77.419… | ||
| rowspan="2" |1\7 | | rowspan="2" |1\7 | ||
100 | 100 | ||
|3\17 | |3\17 | ||
124.137… | 124.137… | ||
|2\10 | |2\10 | ||
141.176… | 141.176… | ||
|3\13 | |3\13 | ||
163.{{Overline|63}} | 163.{{Overline|63}} | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Gb | |Gb | ||
|1b, 1c | |1b, 1c | ||
|3\15 | |3\15 | ||
138.461… | 138.461… | ||
|2\11 | |2\11 | ||
126.315… | 126.315… | ||
|3\18 | |3\18 | ||
116.129… | 116.129… | ||
|2\17 | |2\17 | ||
82.758… | 82.758… | ||
|1\10 | |1\10 | ||
70.588… | 70.588… | ||
|1\13 | |1\13 | ||
54.{{Overline|54}} | 54.{{Overline|54}} | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''G''' | |'''G''' | ||
|'''1''' | |'''1''' | ||
|'''4\15''' | |'''4\15''' | ||
'''184.615…''' | '''184.615…''' | ||
|'''3\11''' | |'''3\11''' | ||
'''189.473…''' | '''189.473…''' | ||
|'''5\18''' | |'''5\18''' | ||
'''193.548…''' | '''193.548…''' | ||
|'''2\7''' | |'''2\7''' | ||
'''200''' | '''200''' | ||
|'''5\17''' | |'''5\17''' | ||
'''206.896…''' | '''206.896…''' | ||
|'''3\10''' | |'''3\10''' | ||
'''211.764…''' | '''211.764…''' | ||
|'''4\13''' | |'''4\13''' | ||
'''218.{{Overline|18}}''' | '''218.{{Overline|18}}''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|G# | |G# | ||
|1# | |1# | ||
|5\15 | |5\15 | ||
230.769… | 230.769… | ||
|4\11 | |4\11 | ||
252.631… | 252.631… | ||
|7\18 | |7\18 | ||
270.967… | 270.967… | ||
| rowspan="2" |3\7 | | rowspan="2" |3\7 | ||
300 | 300 | ||
|8\17 | |8\17 | ||
331.034… | 331.034… | ||
|5\10 | |5\10 | ||
352.941… | 352.941… | ||
|7\13 | |7\13 | ||
381.{{Overline|81}} | 381.{{Overline|81}} | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Ab | |Ab | ||
|2b, 2c | |2b, 2c | ||
|7\15 | |7\15 | ||
323.076… | 323.076… | ||
|5\11 | |5\11 | ||
315.789… | 315.789… | ||
|8\18 | |8\18 | ||
309.677… | 309.677… | ||
|7\17 | |7\17 | ||
289.655… | 289.655… | ||
|4\10 | |4\10 | ||
282.352… | 282.352… | ||
|5\13 | |5\13 | ||
272.{{Overline|72}} | 272.{{Overline|72}} | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|A | |A | ||
|2 | |2 | ||
|8\15 | |8\15 | ||
369.230… | 369.230… | ||
|6\11 | |6\11 | ||
378.947… | 378.947… | ||
|10\18 | |10\18 | ||
387.096… | 387.096… | ||
|4\7 | |4\7 | ||
400 | 400 | ||
|10\17 | |10\17 | ||
413.793… | 413.793… | ||
|6\10 | |6\10 | ||
423.529… | 423.529… | ||
|8\13 | |8\13 | ||
436.{{Overline|36}} | 436.{{Overline|36}} | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|A# | |A# | ||
|2# | |2# | ||
|9\15 | |9\15 | ||
415.384… | 415.384… | ||
| rowspan="2" |7\11 | | rowspan="2" |7\11 | ||
442.105… | 442.105… | ||
|12\18 | |12\18 | ||
464.516… | 464.516… | ||
|5\7 | |5\7 | ||
500 | 500 | ||
|13\17 | |13\17 | ||
537.931… | 537.931… | ||
|8\10 | |8\10 | ||
564.705… | 564.705… | ||
|11\13 | |11\13 | ||
600 | 600 | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | |Bbb | ||
|3bb, 3cc | |3bb, 3cc | ||
|10\15 | |10\15 | ||
461.538… | 461.538… | ||
|11\18 | |11\18 | ||
425.806… | 425.806… | ||
|4\7 | |4\7 | ||
400 | 400 | ||
|9\17 | |9\17 | ||
372.413… | 372.413… | ||
|5\10 | |5\10 | ||
352.941… | 352.941… | ||
|6\13 | |6\13 | ||
327.{{Overline|27}} | 327.{{Overline|27}} | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Bb''' | |'''Bb''' | ||
|'''3b, 3c''' | |'''3b, 3c''' | ||
|'''11\15''' | |'''11\15''' | ||
'''507.692…''' | '''507.692…''' | ||
|'''8\11''' | |'''8\11''' | ||
'''505.263…''' | '''505.263…''' | ||
|'''13\18''' | |'''13\18''' | ||
'''503.225…''' | '''503.225…''' | ||
|'''5\7''' | |'''5\7''' | ||
'''500''' | '''500''' | ||
|'''12\17''' | |'''12\17''' | ||
'''496.551…''' | '''496.551…''' | ||
|'''7\10''' | |'''7\10''' | ||
'''494.117…''' | '''494.117…''' | ||
|'''9\13''' | |'''9\13''' | ||
'''490.{{Overline|90}}''' | '''490.{{Overline|90}}''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
|B | |B | ||
|3 | |3 | ||
|12\15 | |12\15 | ||
553.846… | 553.846… | ||
|9\11 | |9\11 | ||
568.421… | 568.421… | ||
|15\18 | |15\18 | ||
580.645… | 580.645… | ||
|6\7 | |6\7 | ||
600 | 600 | ||
|15\17 | |15\17 | ||
620.689… | 620.689… | ||
|9\10 | |9\10 | ||
635.294… | 635.294… | ||
|12\13 | |12\13 | ||
654.{{Overline|54}} | 654.{{Overline|54}} | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|B# | |B# | ||
|3# | |3# | ||
|13\15 | |13\15 | ||
600 | 600 | ||
| rowspan="2" |10\11 | | rowspan="2" |10\11 | ||
631.578… | 631.578… | ||
|17\18 | |17\18 | ||
658.064… | 658.064… | ||
|7\7 | |7\7 | ||
700 | 700 | ||
|18\17 | |18\17 | ||
744.827… | 744.827… | ||
|11\10 | |11\10 | ||
776.470… | 776.470… | ||
|15\13 | |15\13 | ||
818.{{Overline|18}} | 818.{{Overline|18}} | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
Line 749: | Line 501: | ||
− | − | ||
|10\13 | |10\13 | ||
545.{{Overline|45}} | 545.{{Overline|45}} | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!H | !H | ||
!4 | !4 | ||
!'''15\15''' | !'''15\15''' | ||
'''692.307…''' | '''692.307…''' | ||
!'''11\11''' | !'''11\11''' | ||
'''694.736…''' | '''694.736…''' | ||
!'''18\18''' | !'''18\18''' | ||
'''696.774…''' | '''696.774…''' | ||
!'''7\7''' | !'''7\7''' | ||
'''700''' | '''700''' | ||
!'''17\17''' | !'''17\17''' | ||
'''703.448…''' | '''703.448…''' | ||
!'''10\10''' | !'''10\10''' | ||
'''705.882…''' | '''705.882…''' | ||
!'''13\13''' | !'''13\13''' | ||
'''709.'''{{Overline|09}} | '''709.'''{{Overline|09}} | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Η# | |Η# | ||
|4# | |4# | ||
|16\15 | |16\15 | ||
738.461… | 738.461… | ||
|12\11 | |12\11 | ||
757.894… | 757.894… | ||
|20\18 | |20\18 | ||
774.193… | 774.193… | ||
| rowspan="2" |8\8 | | rowspan="2" |8\8 | ||
800 | 800 | ||
|20\17 | |20\17 | ||
827.586… | 827.586… | ||
|12\10 | |12\10 | ||
847.058… | 847.058… | ||
|16\13 | |16\13 | ||
872.{{Overline|72}} | 872.{{Overline|72}} | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Cb | |Cb | ||
|5b, 5c | |5b, 5c | ||
|18\15 | |18\15 | ||
830.769… | 830.769… | ||
|13\11 | |13\11 | ||
821.052… | 821.052… | ||
|21\18 | |21\18 | ||
812.903… | 812.903… | ||
|19\17 | |19\17 | ||
786.206… | 786.206… | ||
|11\10 | |11\10 | ||
776.470… | 776.470… | ||
|14\13 | |14\13 | ||
763.{{Overline|63}} | 763.{{Overline|63}} | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''C''' | |'''C''' | ||
|'''5''' | |'''5''' | ||
|'''19\18''' | |'''19\18''' | ||
'''876.923…''' | '''876.923…''' | ||
|'''14\11''' | |'''14\11''' | ||
'''884.210…''' | '''884.210…''' | ||
|'''23\18''' | |'''23\18''' | ||
'''890.322…''' | '''890.322…''' | ||
|'''9\5''' | |'''9\5''' | ||
'''900''' | '''900''' | ||
|'''22\17''' | |'''22\17''' | ||
'''910.344…''' | '''910.344…''' | ||
|'''13\10''' | |'''13\10''' | ||
'''917.647…''' | '''917.647…''' | ||
|'''17\13''' | |'''17\13''' | ||
'''927.{{Overline|27}}''' | '''927.{{Overline|27}}''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|C# | |C# | ||
|5# | |5# | ||
|20\15 | |20\15 | ||
923.076… | 923.076… | ||
|15\11 | |15\11 | ||
947.368… | 947.368… | ||
|25\18 | |25\18 | ||
967.741… | 967.741… | ||
| rowspan="2" |10\7 | | rowspan="2" |10\7 | ||
1000 | 1000 | ||
|25\17 | |25\17 | ||
1034.482… | 1034.482… | ||
|15\10 | |15\10 | ||
1058.823… | 1058.823… | ||
|20\13 | |20\13 | ||
1090.{{Overline|90}} | 1090.{{Overline|90}} | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Db | |Db | ||
|6b, 6c | |6b, 6c | ||
|22\15 | |22\15 | ||
1015.384… | 1015.384… | ||
|16\11 | |16\11 | ||
1010.526… | 1010.526… | ||
|26\18 | |26\18 | ||
1006.451… | 1006.451… | ||
|24\17 | |24\17 | ||
993.103… | 993.103… | ||
|14\10 | |14\10 | ||
988.235… | 988.235… | ||
|18\13 | |18\13 | ||
981.{{Overline|81}} | 981.{{Overline|81}} | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|D | |D | ||
|6 | |6 | ||
|23\15 | |23\15 | ||
1061.538… | 1061.538… | ||
|17\11 | |17\11 | ||
1073.684… | 1073.684… | ||
|28\18 | |28\18 | ||
1083.870… | 1083.870… | ||
|11\7 | |11\7 | ||
1100 | 1100 | ||
|27\17 | |27\17 | ||
1117.241… | 1117.241… | ||
|16\10 | |16\10 | ||
1129.411… | 1129.411… | ||
|21\9 | |21\9 | ||
1145.{{Overline|45}} | 1145.{{Overline|45}} | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|D# | |D# | ||
|6# | |6# | ||
|24\15 | |24\15 | ||
1107.692… | 1107.692… | ||
| rowspan="2" |18\11 | | rowspan="2" |18\11 | ||
1136.842… | 1136.842… | ||
|30\18 | |30\18 | ||
1161.290… | 1161.290… | ||
|12\7 | |12\7 | ||
1200 | 1200 | ||
|30\17 | |30\17 | ||
1241.379… | 1241.379… | ||
|18\10 | |18\10 | ||
1270.588… | 1270.588… | ||
|24\13 | |24\13 | ||
1309.{{Overline|09}} | 1309.{{Overline|09}} | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Ebb | |Ebb | ||
|7bb, 7cc | |7bb, 7cc | ||
|25\15 | |25\15 | ||
1153.846… | 1153.846… | ||
|29\18 | |29\18 | ||
1122.580… | 1122.580… | ||
|11\7 | |11\7 | ||
1100 | 1100 | ||
|26\17 | |26\17 | ||
1075.862… | 1075.862… | ||
|15\10 | |15\10 | ||
1058.823… | 1058.823… | ||
|19\13 | |19\13 | ||
1036.{{Overline|36}} | 1036.{{Overline|36}} | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Eb''' | |'''Eb''' | ||
|'''7b, 7c''' | |'''7b, 7c''' | ||
|'''26\15''' | |'''26\15''' | ||
'''1200''' | '''1200''' | ||
|'''19\11''' | |'''19\11''' | ||
'''1200''' | '''1200''' | ||
|'''31\18''' | |'''31\18''' | ||
'''1200''' | '''1200''' | ||
|'''12\7''' | |'''12\7''' | ||
'''1200''' | '''1200''' | ||
|'''29\17''' | |'''29\17''' | ||
'''1200''' | '''1200''' | ||
|'''17\10''' | |'''17\10''' | ||
'''1200''' | '''1200''' | ||
|'''22\13''' | |'''22\13''' | ||
'''1200''' | '''1200''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
|E | |E | ||
|7 | |7 | ||
|27\15 | |27\15 | ||
1246.153… | 1246.153… | ||
|20\11 | |20\11 | ||
1263.157… | 1263.157… | ||
|33\18 | |33\18 | ||
1277.419… | 1277.419… | ||
|13\7 | |13\7 | ||
1300 | 1300 | ||
|32\17 | |32\17 | ||
1324.137… | 1324.137… | ||
|19\10 | |19\10 | ||
1341.176… | 1341.176… | ||
|25\13 | |25\13 | ||
1363.{{Overline|63}} | 1363.{{Overline|63}} | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|E# | |E# | ||
|7# | |7# | ||
|28\15 | |28\15 | ||
1292.307… | 1292.307… | ||
| rowspan="2" |21\11 | | rowspan="2" |21\11 | ||
1326.315… | 1326.315… | ||
|35\18 | |35\18 | ||
1354.838… | 1354.838… | ||
|14\7 | |14\7 | ||
1400 | 1400 | ||
|35\17 | |35\17 | ||
1448.275… | 1448.275… | ||
|21\10 | |21\10 | ||
1482.352… | 1482.352… | ||
|28\13 | |28\13 | ||
1527.{{Overline|27}} | 1527.{{Overline|27}} | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Fb | |Fb | ||
|8b, Fc | |8b, Fc | ||
|29\15 | |29\15 | ||
1338.461… | 1338.461… | ||
|34\18 | |34\18 | ||
1316.129… | 1316.129… | ||
|13\7 | |13\7 | ||
1300 | 1300 | ||
|31\17 | |31\17 | ||
1282.758… | 1282.758… | ||
|18\10 | |18\10 | ||
1270.588… | 1270.588… | ||
|23\18 | |23\18 | ||
1254.{{Overline|54}} | 1254.{{Overline|54}} | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!F | !F | ||
!8, F | !8, F | ||
!30\15 | !30\15 | ||
1384.615… | 1384.615… | ||
!22\11 | !22\11 | ||
1389.473… | 1389.473… | ||
!36\18 | !36\18 | ||
1393.548… | 1393.548… | ||
!14\7 | !14\7 | ||
1400 | 1400 | ||
!34\17 | !34\17 | ||
1406.896… | 1406.896… | ||
!20\10 | !20\10 | ||
1411.764… | 1411.764… | ||
!26\13 | |||
!26\ | |||
1418.{{Overline|18}} | 1418.{{Overline|18}} | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|F# | |F# | ||
|8#, F# | |8#, F# | ||
|31\15 | |31\15 | ||
1430.769… | 1430.769… | ||
|23\11 | |23\11 | ||
1452.631… | 1452.631… | ||
|38\18 | |38\18 | ||
1470.967… | 1470.967… | ||
| rowspan="2" |15\7 | | rowspan="2" |15\7 | ||
1500 | 1500 | ||
|37\17 | |37\17 | ||
1531.034… | 1531.034… | ||
|22\10 | |22\10 | ||
1552.941… | 1552.941… | ||
|29\13 | |29\13 | ||
1581.{{Overline|81}} | 1581.{{Overline|81}} | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Gb | |Gb | ||
|9b, Gc | |9b, Gc | ||
|33\15 | |33\15 | ||
1523.076… | 1523.076… | ||
|24\11 | |24\11 | ||
1515.789… | 1515.789… | ||
|39\18 | |39\18 | ||
1509.677… | 1509.677… | ||
|36\17 | |36\17 | ||
1489.655… | 1489.655… | ||
|21\10 | |21\10 | ||
1482.352… | 1482.352… | ||
|27\13 | |27\13 | ||
1472.{{Overline|72}} | 1472.{{Overline|72}} | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''G''' | |'''G''' | ||
|'''9, G''' | |'''9, G''' | ||
|'''34\15''' | |'''34\15''' | ||
'''1569.230…''' | '''1569.230…''' | ||
|'''25\11''' | |'''25\11''' | ||
'''1578.947…''' | '''1578.947…''' | ||
|'''41\18''' | |'''41\18''' | ||
'''1587.096…''' | '''1587.096…''' | ||
|'''16\7''' | |'''16\7''' | ||
'''1600''' | '''1600''' | ||
|'''39\17''' | |'''39\17''' | ||
'''1613.793…''' | '''1613.793…''' | ||
|'''23\10''' | |'''23\10''' | ||
'''1623.529…''' | '''1623.529…''' | ||
|'''30\13''' | |'''30\13''' | ||
'''1636.{{Overline|36}}''' | '''1636.{{Overline|36}}''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|G# | |G# | ||
|9#, G# | |9#, G# | ||
|35\15 | |35\15 | ||
1615.384… | 1615.384… | ||
|26\11 | |26\11 | ||
1642.105… | 1642.105… | ||
|43\18 | |43\18 | ||
1664.516… | 1664.516… | ||
| rowspan="2" |17\7 | | rowspan="2" |17\7 | ||
1700 | 1700 | ||
|42\17 | |42\17 | ||
1737.931… | 1737.931… | ||
|25\10 | |25\10 | ||
1764.705… | 1764.705… | ||
|33\13 | |33\13 | ||
1800 | 1800 | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Ab | |Ab | ||
|Xb, Ac | |Xb, Ac | ||
|37\15 | |37\15 | ||
1707.692… | 1707.692… | ||
|27\11 | |27\11 | ||
1705.263… | 1705.263… | ||
|44\18 | |44\18 | ||
1703.225… | 1703.225… | ||
|41\17 | |41\17 | ||
1696.551… | 1696.551… | ||
|24\10 | |24\10 | ||
1694.117… | 1694.117… | ||
|31\13 | |31\13 | ||
1690.{{Overline|90}} | 1690.{{Overline|90}} | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|A | |A | ||
|X, A | |X, A | ||
|38\15 | |38\15 | ||
1753.846… | 1753.846… | ||
|28\11 | |28\11 | ||
1768.421… | 1768.421… | ||
|46\18 | |46\18 | ||
1780.645… | 1780.645… | ||
|18\7 | |18\7 | ||
1800 | 1800 | ||
|44\17 | |44\17 | ||
1820.689… | 1820.689… | ||
|26\10 | |26\10 | ||
1835.294… | 1835.294… | ||
|34\13 | |34\13 | ||
1854.{{Overline|54}} | 1854.{{Overline|54}} | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|A# | |A# | ||
|X#, A# | |X#, A# | ||
|39\15 | |39\15 | ||
1800 | 1800 | ||
| rowspan="2" |29\11 | | rowspan="2" |29\11 | ||
1831.578… | 1831.578… | ||
|48\18 | |48\18 | ||
1858.064… | 1858.064… | ||
|19\7 | |19\7 | ||
1900 | 1900 | ||
|47\17 | |47\17 | ||
1944.827… | 1944.827… | ||
|28\10 | |28\10 | ||
1976.470… | 1976.470… | ||
|37\13 | |37\13 | ||
2018.{{Overline|18}} | 2018.{{Overline|18}} | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | |Bbb | ||
|Ebb, Ccc | |Ebb, Ccc | ||
|40\15 | |40\15 | ||
1846.153… | 1846.153… | ||
|47\18 | |47\18 | ||
1819.354… | 1819.354… | ||
|18\7 | |18\7 | ||
1800 | 1800 | ||
|43\17 | |43\17 | ||
1779.310… | 1779.310… | ||
|25\10 | |25\10 | ||
1764.705… | 1764.705… | ||
|32\13 | |32\13 | ||
1745.{{Overline|45}} | 1745.{{Overline|45}} | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Bb''' | |'''Bb''' | ||
|Eb, Cc | |Eb, Cc | ||
|'''41\15''' | |'''41\15''' | ||
'''1892.307…''' | '''1892.307…''' | ||
|'''30\11''' | |'''30\11''' | ||
'''1894.736…''' | '''1894.736…''' | ||
|'''49\18''' | |'''49\18''' | ||
'''1896.774…''' | '''1896.774…''' | ||
|'''19\7''' | |'''19\7''' | ||
'''1900''' | '''1900''' | ||
|'''46\17''' | |'''46\17''' | ||
'''1903.448…''' | '''1903.448…''' | ||
|'''27\10''' | |'''27\10''' | ||
'''1905.882…''' | '''1905.882…''' | ||
|'''35\13''' | |'''35\13''' | ||
'''1909.{{Overline|09}}''' | '''1909.{{Overline|09}}''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
|B | |B | ||
|E, C | |E, C | ||
|42\15 | |42\15 | ||
1938.461… | 1938.461… | ||
|31\11 | |31\11 | ||
1957.894… | 1957.894… | ||
|51\18 | |51\18 | ||
1974.193… | 1974.193… | ||
|20\7 | |20\7 | ||
2000 | 2000 | ||
|49\17 | |49\17 | ||
2027.586… | 2027.586… | ||
|29\10 | |29\10 | ||
1976.470… | 1976.470… | ||
|38\13 | |38\13 | ||
2072.{{Overline|72}} | 2072.{{Overline|72}} | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|B# | |B# | ||
|Ex, Cx | |Ex, Cx | ||
|43\15 | |43\15 | ||
1984.615… | 1984.615… | ||
| rowspan="2" |32\11 | | rowspan="2" |32\11 | ||
2021.052… | 2021.052… | ||
|53\18 | |53\18 | ||
2051.612… | 2051.612… | ||
|21\7 | |21\7 | ||
2100 | 2100 | ||
|52\17 | |52\17 | ||
2151.724… | 2151.724… | ||
|31\10 | |31\10 | ||
2188.235… | 2188.235… | ||
|41\13 | |41\13 | ||
2236.{{Overline|36}} | 2236.{{Overline|36}} | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Hb | |Hb | ||
|0b, Dc | |0b, Dc | ||
|44\15 | |44\15 | ||
2030.769… | 2030.769… | ||
|52\18 | |52\18 | ||
2012.903… | 2012.903… | ||
|20\7 | |20\7 | ||
2000 | 2000 | ||
|48\17 | |48\17 | ||
1986.206… | 1986.206… | ||
|28\10 | |28\10 | ||
1967.470… | 1967.470… | ||
|36\13 | |36\13 | ||
1963.{{Overline|63}} | 1963.{{Overline|63}} | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!H | !H | ||
!0, D | !0, D | ||
!45\15 | !45\15 | ||
2076.923… | 2076.923… | ||
!33\11 | !33\11 | ||
2084.210… | 2084.210… | ||
!54\18 | !54\18 | ||
2090.322… | 2090.322… | ||
!21\7 | !21\7 | ||
2100 | 2100 | ||
!51\17 | !51\17 | ||
2110.344… | 2110.344… | ||
!30\10 | !30\10 | ||
2117.647… | 2117.647… | ||
!39\13 | !39\13 | ||
2127.{{Overline|27}} | 2127.{{Overline|27}} | ||
|} | |} | ||