User:Moremajorthanmajor/3L 1s (perfect fifth-equivalent): Difference between revisions

Moremajorthanmajor (talk | contribs)
Created page with "Revision as of 00:01, 15 July 2022 (edit) Moremajorthanmajor (talk | contribs) (Undo revision 93402 by Moremajorthanmajor ([[User talk:Moremajorthanmajor|talk]) Tags: Removed..."
 
Moremajorthanmajor (talk | contribs)
No edit summary
Line 1: Line 1:
Revision as of 00:01, 15 July 2022 (edit)
Moremajorthanmajor (talk | contribs)
(Undo revision 93402 by Moremajorthanmajor ([[User talk:Moremajorthanmajor|talk])
Tags: Removed redirect Undo
← Older edit
Latest revision as of 00:06, 15 July 2022 (edit) (undo)
Moremajorthanmajor (talk | contribs)
(Redirected page to Angel/Tuning specifications)
Tag: New redirect
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{Infobox MOS
{{Infobox MOS
+
 
#REDIRECT [[Angel/Tuning specifications]]
| Name = Diatonic/Angel
| Name = Diatonic
| Equave = 3/2
| Equave = 3/2
| nLargeSteps = 3
| nLargeSteps = 3
| nSmallSteps = 1
| nSmallSteps = 1
| Equalized = 2
| Equalized = 2
| Paucitonic = 1
| Paucitonic = 1
 
| Pattern = LLLs
| Pattern = LLLs
}}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]).  
}}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]).  
   
   
 
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).  
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).  
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. P
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. P
   
   
[[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]].
[[Basic]] diatonic is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]].
==Notation==
==Notation==
   
   
There are 3 main ways to notate the diatonic scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used.
There are 3 main ways to notate the diatonic scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used.
{| class="wikitable"
{| class="wikitable"
|+
|+
Cents
Cents
! colspan="3" |Notation
! colspan="3" |Notation
!Supersoft
!Supersoft
!Soft
!Soft
!Semisoft
!Semisoft
!Basic
!Basic
!Semihard
!Semihard
!Hard
!Hard
!Superhard
!Superhard
|-
|-
!Diatonic
!Diatonic
!Napoli
!Napoli
!Bijou
!Bijou
!~15edf
!~15edf
!~11edf
!~11edf
!~18edf
!~18edf
!~7edf
!~7edf
!~17edf
!~17edf
!~10edf
!~10edf
!~13edf
!~13edf
|-
|-
|Do#, Sol#
|Do#, Sol#
|F#
|F#
|0#, D#
|0#, D#
|1\15
|1\15
46.153…
46.153…
|1\11
|1\11
63.157…
63.157…
|2\18
|2\18
77.419…
77.419…
| rowspan="2" |1\7
| rowspan="2" |1\7
100
100
|3\17
|3\17
124.137…
124.137…
|2\10
|2\10
   
   
141.176…
141.176…
|3\13
|3\13
163.{{Overline|63}}
163.{{Overline|63}}
|-
|-
|Reb, Lab
|Reb, Lab
|Gb
|Gb
|1b, 1c
|1b, 1c
|3\15
|3\15
138.461…
138.461…
|2\11
|2\11
126.315…
126.315…
|3\18
|3\18
116.129…
116.129…
|2\17
|2\17
82.758…
82.758…
|1\10
|1\10
70.588…
70.588…
|1\13
|1\13
54.{{Overline|54}}
54.{{Overline|54}}
|-
|-
|'''Re, La'''
|'''Re, La'''
|'''G'''
|'''G'''
|'''1'''
|'''1'''
|'''4\15'''
|'''4\15'''
'''184.615…'''
'''184.615…'''
|'''3\11'''
|'''3\11'''
'''189.473…'''
'''189.473…'''
   
   
|'''5\18'''
|'''5\18'''
'''193.548…'''
'''193.548…'''
|'''2\7'''
|'''2\7'''
'''200'''
'''200'''
|'''5\17'''
|'''5\17'''
'''206.896…'''
'''206.896…'''
|'''3\10'''
|'''3\10'''
'''211.764…'''
'''211.764…'''
|'''4\13'''
|'''4\13'''
'''218.{{Overline|18}}'''
'''218.{{Overline|18}}'''
|-
|-
|Re#, La#
|Re#, La#
|G#
|G#
|1#
|1#
|5\15
|5\15
230.769…
230.769…
|4\11
|4\11
252.631…
252.631…
|7\18
|7\18
270.967…
270.967…
| rowspan="2" |3\7
| rowspan="2" |3\7
300
300
|8\17
|8\17
331.034…
331.034…
|5\10
|5\10
352.941…
352.941…
|7\13
|7\13
381.{{Overline|81}}
381.{{Overline|81}}
|-
|-
|Mib, Sib
|Mib, Sib
|Ab
|Ab
|2b, 2c
|2b, 2c
|7\15
|7\15
323.076…
323.076…
|5\11
|5\11
315.789…
315.789…
|8\18
|8\18
309.677…
309.677…
|7\17
|7\17
289.655…
289.655…
|4\10
|4\10
282.352…
282.352…
|5\13
|5\13
272.{{Overline|72}}
272.{{Overline|72}}
|-
|-
|Mi, Si
|Mi, Si
|A
|A
|2
|2
|8\15
|8\15
369.230…
369.230…
|6\11
|6\11
378.947…
378.947…
|10\18
|10\18
387.096…
387.096…
|4\7
|4\7
400
400
|10\17
|10\17
413.793…
413.793…
|6\10
|6\10
423.529…
423.529…
|8\13
|8\13
436.{{Overline|36}}
436.{{Overline|36}}
|-
|-
|Mi#, Si#
|Mi#, Si#
|A#
|A#
|2#
|2#
|9\15
|9\15
415.384…
415.384…
| rowspan="2" |7\11
| rowspan="2" |7\11
442.105…
442.105…
|12\18
|12\18
464.516…
464.516…
|5\7
|5\7
500
500
|13\17
|13\17
537.931…
537.931…
|8\10
|8\10
564.705…
564.705…
|11\13
|11\13
600
600
|-
|-
|Fab, Dob
|Fab, Dob
|Bbb
|Bbb
|3bb, 3cc
|3bb, 3cc
|10\15
|10\15
461.538…
461.538…
|11\18
|11\18
425.806…
425.806…
|4\7
|4\7
400
400
|9\17
|9\17
372.413…
372.413…
|5\10
|5\10
352.941…
352.941…
|6\13
|6\13
327.{{Overline|27}}
327.{{Overline|27}}
|-
|-
|'''Fa, Do'''
|'''Fa, Do'''
|'''Bb'''
|'''Bb'''
|'''3b, 3c'''
|'''3b, 3c'''
|'''11\15'''
|'''11\15'''
'''507.692…'''
'''507.692…'''
|'''8\11'''
|'''8\11'''
'''505.263…'''
'''505.263…'''
|'''13\18'''
|'''13\18'''
'''503.225…'''
'''503.225…'''
|'''5\7'''
|'''5\7'''
'''500'''
'''500'''
|'''12\17'''
|'''12\17'''
'''496.551…'''
'''496.551…'''
|'''7\10'''
|'''7\10'''
'''494.117…'''
'''494.117…'''
|'''9\13'''
|'''9\13'''
'''490.{{Overline|90}}'''
'''490.{{Overline|90}}'''
|-
|-
|Fa#, Do#
|Fa#, Do#
|B
|B
|3
|3
|12\15
|12\15
553.846…
553.846…
|9\11
|9\11
   
   
568.421…
568.421…
|15\18
|15\18
580.645…
580.645…
|6\7
|6\7
600
600
|15\17
|15\17
620.689…
620.689…
|9\10
|9\10
635.294…
635.294…
|12\13
|12\13
654.{{Overline|54}}
654.{{Overline|54}}
|-
|-
|Fax, Dox
|Fax, Dox
|B#
|B#
|3#
|3#
|13\15
|13\15
600
600
| rowspan="2" |10\11
| rowspan="2" |10\11
631.578…
631.578…
|17\18
|17\18
658.064…
658.064…
|7\7
|7\7
700
700
|18\17
|18\17
744.827…
744.827…
|11\10
|11\10
776.470…
776.470…
|15\13
|15\13
818.{{Overline|18}}
818.{{Overline|18}}
|-
|-
|Dob, Solb
|Dob, Solb
   
   
Line 749: Line 501:
|10\13
|10\13
545.{{Overline|45}}
545.{{Overline|45}}
|-
|-
!Do, Sol
!Do, Sol
!H
!H
!4
!4
!'''15\15'''
!'''15\15'''
'''692.307…'''
'''692.307…'''
!'''11\11'''
!'''11\11'''
   
   
'''694.736…'''
'''694.736…'''
!'''18\18'''
!'''18\18'''
'''696.774…'''
'''696.774…'''
!'''7\7'''
!'''7\7'''
'''700'''
'''700'''
!'''17\17'''
!'''17\17'''
'''703.448…'''
'''703.448…'''
!'''10\10'''
!'''10\10'''
'''705.882…'''
'''705.882…'''
!'''13\13'''
!'''13\13'''
'''709.'''{{Overline|09}}
'''709.'''{{Overline|09}}
|-
|-
|Do#, Sol#
|Do#, Sol#
|Η#
|Η#
|4#
|4#
|16\15
|16\15
738.461…
738.461…
|12\11
|12\11
757.894…
757.894…
|20\18
|20\18
774.193…
774.193…
| rowspan="2" |8\8
| rowspan="2" |8\8
800
800
|20\17
|20\17
827.586…
827.586…
|12\10
|12\10
847.058…
847.058…
|16\13
|16\13
872.{{Overline|72}}
872.{{Overline|72}}
|-
|-
|Reb, Lab
|Reb, Lab
|Cb
|Cb
|5b, 5c
|5b, 5c
|18\15
|18\15
830.769…
830.769…
|13\11
|13\11
821.052…
821.052…
|21\18
|21\18
812.903…
812.903…
|19\17
|19\17
786.206…
786.206…
|11\10
|11\10
776.470…
776.470…
|14\13
|14\13
763.{{Overline|63}}
763.{{Overline|63}}
|-
|-
|'''Re, La'''
|'''Re, La'''
|'''C'''
|'''C'''
|'''5'''
|'''5'''
|'''19\18'''
|'''19\18'''
'''876.923…'''
'''876.923…'''
|'''14\11'''
|'''14\11'''
'''884.210…'''
'''884.210…'''
|'''23\18'''
|'''23\18'''
'''890.322…'''
'''890.322…'''
|'''9\5'''
|'''9\5'''
'''900'''
'''900'''
|'''22\17'''
|'''22\17'''
'''910.344…'''
'''910.344…'''
|'''13\10'''
|'''13\10'''
'''917.647…'''
'''917.647…'''
|'''17\13'''
|'''17\13'''
'''927.{{Overline|27}}'''
'''927.{{Overline|27}}'''
|-
|-
|Re#, La#
|Re#, La#
|C#
|C#
|5#
|5#
|20\15
|20\15
923.076…
923.076…
|15\11
|15\11
947.368…
947.368…
|25\18
|25\18
967.741…
967.741…
| rowspan="2" |10\7
| rowspan="2" |10\7
1000
1000
|25\17
|25\17
1034.482…
1034.482…
|15\10
|15\10
1058.823…
1058.823…
|20\13
|20\13
1090.{{Overline|90}}
1090.{{Overline|90}}
|-
|-
|Mib, Sib
|Mib, Sib
|Db
|Db
|6b, 6c
|6b, 6c
|22\15
|22\15
1015.384…
1015.384…
|16\11
|16\11
1010.526…
1010.526…
|26\18
|26\18
1006.451…
1006.451…
|24\17
|24\17
993.103…
993.103…
|14\10
|14\10
988.235…
988.235…
|18\13
|18\13
981.{{Overline|81}}
981.{{Overline|81}}
|-
|-
|Mi, Si
|Mi, Si
|D
|D
|6
|6
|23\15
|23\15
1061.538…
1061.538…
|17\11
|17\11
1073.684…
1073.684…
|28\18
|28\18
1083.870…
1083.870…
|11\7
|11\7
1100
1100
|27\17
|27\17
1117.241…
1117.241…
|16\10
|16\10
1129.411…
1129.411…
|21\9
|21\9
1145.{{Overline|45}}
1145.{{Overline|45}}
|-
|-
|Mi#, Si#
|Mi#, Si#
|D#
|D#
|6#
|6#
|24\15
|24\15
1107.692…
1107.692…
| rowspan="2" |18\11
| rowspan="2" |18\11
1136.842…
1136.842…
|30\18
|30\18
1161.290…
1161.290…
|12\7
|12\7
1200
1200
|30\17
|30\17
1241.379…
1241.379…
|18\10
|18\10
1270.588…
1270.588…
|24\13
|24\13
1309.{{Overline|09}}
1309.{{Overline|09}}
|-
|-
|Fab, Dob
|Fab, Dob
|Ebb
|Ebb
|7bb, 7cc
|7bb, 7cc
|25\15
|25\15
1153.846…
1153.846…
|29\18
|29\18
1122.580…
1122.580…
|11\7
|11\7
1100
1100
|26\17
|26\17
1075.862…
1075.862…
|15\10
|15\10
1058.823…
1058.823…
|19\13
|19\13
1036.{{Overline|36}}
1036.{{Overline|36}}
|-
|-
|'''Fa, Do'''
|'''Fa, Do'''
|'''Eb'''
|'''Eb'''
|'''7b, 7c'''
|'''7b, 7c'''
|'''26\15'''
|'''26\15'''
'''1200'''
'''1200'''
|'''19\11'''
|'''19\11'''
'''1200'''
'''1200'''
|'''31\18'''
|'''31\18'''
'''1200'''
'''1200'''
|'''12\7'''
|'''12\7'''
'''1200'''
'''1200'''
|'''29\17'''
|'''29\17'''
'''1200'''
'''1200'''
|'''17\10'''
|'''17\10'''
'''1200'''
'''1200'''
|'''22\13'''
|'''22\13'''
'''1200'''
'''1200'''
|-
|-
|Fa#, Do#
|Fa#, Do#
|E
|E
|7
|7
|27\15
|27\15
1246.153…
1246.153…
|20\11
|20\11
1263.157…
1263.157…
|33\18
|33\18
1277.419…
1277.419…
|13\7
|13\7
1300
1300
|32\17
|32\17
1324.137…
1324.137…
|19\10
|19\10
1341.176…
1341.176…
|25\13
|25\13
1363.{{Overline|63}}
1363.{{Overline|63}}
|-
|-
|Fax, Dox
|Fax, Dox
|E#
|E#
|7#
|7#
|28\15
|28\15
1292.307…
1292.307…
| rowspan="2" |21\11
| rowspan="2" |21\11
1326.315…
1326.315…
|35\18
|35\18
1354.838…
1354.838…
|14\7
|14\7
1400
1400
|35\17
|35\17
1448.275…
1448.275…
|21\10
|21\10
1482.352…
1482.352…
|28\13
|28\13
1527.{{Overline|27}}
1527.{{Overline|27}}
|-
|-
|Dob, Solb
|Dob, Solb
|Fb
|Fb
|8b, Fc
|8b, Fc
|29\15
|29\15
1338.461…
1338.461…
|34\18
|34\18
1316.129…
1316.129…
|13\7
|13\7
1300
1300
|31\17
|31\17
1282.758…
1282.758…
|18\10
|18\10
1270.588…
1270.588…
|23\18
|23\18
1254.{{Overline|54}}
1254.{{Overline|54}}
|-
|-
!Do, Sol
!Do, Sol
!F
!F
!8, F
!8, F
!30\15
!30\15
1384.615…
1384.615…
!22\11
!22\11
1389.473…
1389.473…
!36\18
!36\18
1393.548…
1393.548…
!14\7
!14\7
1400
1400
!34\17
!34\17
1406.896…
1406.896…
!20\10
!20\10
1411.764…
1411.764…
!26\13
!26\9
1418.{{Overline|18}}
1418.{{Overline|18}}
|-
|-
|Do#, Sol#
|Do#, Sol#
|F#
|F#
|8#, F#
|8#, F#
|31\15
|31\15
1430.769…
1430.769…
|23\11
|23\11
1452.631…
1452.631…
|38\18
|38\18
1470.967…
1470.967…
| rowspan="2" |15\7
| rowspan="2" |15\7
1500
1500
|37\17
|37\17
1531.034…
1531.034…
|22\10
|22\10
1552.941…
1552.941…
|29\13
|29\13
1581.{{Overline|81}}
1581.{{Overline|81}}
|-
|-
|Reb, Lab
|Reb, Lab
|Gb
|Gb
|9b, Gc
|9b, Gc
|33\15
|33\15
1523.076…
1523.076…
|24\11
|24\11
1515.789…
1515.789…
|39\18
|39\18
1509.677…
1509.677…
|36\17
|36\17
1489.655…
1489.655…
|21\10
|21\10
1482.352…
1482.352…
|27\13
|27\13
1472.{{Overline|72}}
1472.{{Overline|72}}
|-
|-
|'''Re, La'''
|'''Re, La'''
|'''G'''
|'''G'''
|'''9, G'''
|'''9, G'''
|'''34\15'''
|'''34\15'''
'''1569.230…'''
'''1569.230…'''
|'''25\11'''
|'''25\11'''
'''1578.947…'''
'''1578.947…'''
|'''41\18'''
|'''41\18'''
'''1587.096…'''
'''1587.096…'''
|'''16\7'''
|'''16\7'''
'''1600'''
'''1600'''
|'''39\17'''
|'''39\17'''
'''1613.793…'''
'''1613.793…'''
|'''23\10'''
|'''23\10'''
'''1623.529…'''
'''1623.529…'''
|'''30\13'''
|'''30\13'''
'''1636.{{Overline|36}}'''
'''1636.{{Overline|36}}'''
|-
|-
|Re#, La#
|Re#, La#
|G#
|G#
|9#, G#
|9#, G#
|35\15
|35\15
1615.384…
1615.384…
|26\11
|26\11
1642.105…
1642.105…
|43\18
|43\18
1664.516…
1664.516…
| rowspan="2" |17\7
| rowspan="2" |17\7
1700
1700
|42\17
|42\17
1737.931…
1737.931…
|25\10
|25\10
1764.705…
1764.705…
|33\13
|33\13
1800
1800
|-
|-
|Mib, Sib
|Mib, Sib
|Ab
|Ab
|Xb, Ac
|Xb, Ac
|37\15
|37\15
1707.692…
1707.692…
|27\11
|27\11
1705.263…
1705.263…
|44\18
|44\18
1703.225…
1703.225…
|41\17
|41\17
1696.551…
1696.551…
|24\10
|24\10
1694.117…
1694.117…
|31\13
|31\13
1690.{{Overline|90}}
1690.{{Overline|90}}
|-
|-
|Mi, Si
|Mi, Si
|A
|A
|X, A
|X, A
|38\15
|38\15
1753.846…
1753.846…
|28\11
|28\11
1768.421…
1768.421…
|46\18
|46\18
1780.645…
1780.645…
|18\7
|18\7
1800
1800
|44\17
|44\17
1820.689…
1820.689…
|26\10
|26\10
1835.294…
1835.294…
|34\13
|34\13
1854.{{Overline|54}}
1854.{{Overline|54}}
|-
|-
|Mi#, Si#
|Mi#, Si#
|A#
|A#
|X#, A#
|X#, A#
|39\15
|39\15
1800
1800
| rowspan="2" |29\11
| rowspan="2" |29\11
1831.578…
1831.578…
|48\18
|48\18
1858.064…
1858.064…
|19\7
|19\7
1900
1900
|47\17
|47\17
1944.827…
1944.827…
|28\10
|28\10
1976.470…
1976.470…
|37\13
|37\13
2018.{{Overline|18}}
2018.{{Overline|18}}
|-
|-
|Fab, Dob
|Fab, Dob
|Bbb
|Bbb
|Ebb, Ccc
|Ebb, Ccc
|40\15
|40\15
1846.153…
1846.153…
|47\18
|47\18
1819.354…
1819.354…
|18\7
|18\7
1800
1800
|43\17
|43\17
1779.310…
1779.310…
|25\10
|25\10
1764.705…
1764.705…
|32\13
|32\13
1745.{{Overline|45}}
1745.{{Overline|45}}
|-
|-
|'''Fa, Do'''
|'''Fa, Do'''
|'''Bb'''
|'''Bb'''
|Eb, Cc
|Eb, Cc
|'''41\15'''
|'''41\15'''
'''1892.307…'''
'''1892.307…'''
|'''30\11'''
|'''30\11'''
'''1894.736…'''
'''1894.736…'''
   
   
|'''49\18'''
|'''49\18'''
'''1896.774…'''
'''1896.774…'''
|'''19\7'''
|'''19\7'''
'''1900'''
'''1900'''
|'''46\17'''
|'''46\17'''
'''1903.448…'''
'''1903.448…'''
|'''27\10'''
|'''27\10'''
'''1905.882…'''
'''1905.882…'''
|'''35\13'''
|'''35\13'''
'''1909.{{Overline|09}}'''
'''1909.{{Overline|09}}'''
|-
|-
|Fa#, Do#
|Fa#, Do#
|B
|B
|E, C
|E, C
|42\15
|42\15
1938.461…
1938.461…
|31\11
|31\11
1957.894…
1957.894…
|51\18
|51\18
1974.193…
1974.193…
|20\7
|20\7
2000
2000
|49\17
|49\17
2027.586…
2027.586…
|29\10
|29\10
1976.470…
1976.470…
|38\13
|38\13
2072.{{Overline|72}}
2072.{{Overline|72}}
|-
|-
|Fax, Dox
|Fax, Dox
|B#
|B#
|Ex, Cx
|Ex, Cx
|43\15
|43\15
1984.615…
1984.615…
| rowspan="2" |32\11
| rowspan="2" |32\11
2021.052…
2021.052…
|53\18
|53\18
2051.612…
2051.612…
|21\7
|21\7
2100
2100
|52\17
|52\17
2151.724…
2151.724…
|31\10
|31\10
2188.235…
2188.235…
|41\13
|41\13
2236.{{Overline|36}}
2236.{{Overline|36}}
|-
|-
|Dob, Solb
|Dob, Solb
|Hb
|Hb
|0b, Dc
|0b, Dc
|44\15
|44\15
2030.769…
2030.769…
|52\18
|52\18
2012.903…
2012.903…
|20\7
|20\7
2000
2000
|48\17
|48\17
1986.206…
1986.206…
|28\10
|28\10
1967.470…
1967.470…
|36\13
|36\13
1963.{{Overline|63}}
1963.{{Overline|63}}
|-
|-
!Do, Sol
!Do, Sol
!H
!H
!0, D
!0, D
!45\15
!45\15
2076.923…
2076.923…
!33\11
!33\11
2084.210…
2084.210…
!54\18
!54\18
2090.322…
2090.322…
!21\7
!21\7
2100
2100
!51\17
!51\17
2110.344…
2110.344…
!30\10
!30\10
2117.647…
2117.647…
!39\13
!39\13
2127.{{Overline|27}}
2127.{{Overline|27}}
|}
|}