612edo: Difference between revisions
+data |
+rank-2 temperaments |
||
Line 9: | Line 9: | ||
== Theory == | == Theory == | ||
612edo is a very strong [[5-limit]] system, a fact noted by [[Bosanquet]] and [[Barbour]]. It tempers out the sasktel comma, {{monzo| 485 -306 }}, in the 3-limit, and in the 5-limit {{monzo| -52 -17 34 }}, the [[septendecima]], {{monzo| 1 -27 18 }}, the [[ennealimma]], {{monzo| -53 10 16 }}, the kwazy comma, {{monzo| 54 -37 2 }}, the [[monzisma]], {{monzo| -107 47 14 }}, the fortune comma, and {{monzo| 161 -84 -12 }}, the [[atom]]. In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]]. | 612edo is a very strong [[5-limit]] system, a fact noted by [[Bosanquet]] and [[Barbour]]. It tempers out the sasktel comma, {{monzo| 485 -306 }}, in the 3-limit, and in the 5-limit {{monzo| -52 -17 34 }}, the [[septendecima]], {{monzo| 1 -27 18 }}, the [[ennealimma]], {{monzo| -53 10 16 }}, the kwazy comma, {{monzo| 54 -37 2 }}, the [[monzisma]], {{monzo| -107 47 14 }}, the fortune comma, and {{monzo| 161 -84 -12 }}, the [[atom]]. In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]]. | ||
Line 16: | Line 15: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|612}} | {{Harmonics in equal|612}} | ||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 68: | Line 62: | ||
| 4.68 | | 4.68 | ||
|} | |} | ||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 113\612 | |||
| 221.57 | |||
| 8388608/7381125 | |||
| [[Fortune]] | |||
|- | |||
| 1 | |||
| 127\612 | |||
| 249.02 | |||
| {{monzo| -26 18 -1 }} | |||
| [[Monzismic]] | |||
|- | |||
| 2 | |||
| 83\612 | |||
| 162.75 | |||
| 1125/1024 | |||
| [[Kwazy]] | |||
|- | |||
| 9 | |||
| 133\612<br>(25\612) | |||
| 315.69<br>(49.02) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] | |||
|- | |||
| 12 | |||
| 254\612<br>(1\612) | |||
| 498.04<br>(1.96) | |||
| 4/3<br>(32805/32768) | |||
| [[Atomic]] | |||
|- | |||
| 17 | |||
| 127\612<br>(17\612) | |||
| 249.02<br>(33.33) | |||
| {{monzo| -23 5 9 -2 }}<br>(100352/98415) | |||
| [[Chlorine]] | |||
|- | |||
| 18 | |||
| 127\612<br>(9\612) | |||
| 249.02<br>(17.65) | |||
| 231/200<br>(99/98) | |||
| [[Hemiennealimmal]] (11-limit) | |||
|} | |||
[[Category:612edo]] | |||
[[Category:Equal divisions of the octave]] | |||
[[Category:Ennealimmal]] | |||
[[Category:Hemiennealimmal]] |