Tour of regular temperaments: Difference between revisions
→Temperaments defined by a comma involving 11: added extra info about the lattice/pergen. moved the quintuple-prime lattices to the rank-4 section. |
|||
Line 41: | Line 41: | ||
; [[Bug family|Bug or Gugu family]] (P8, P4/2) | ; [[Bug family|Bug or Gugu family]] (P8, P4/2) | ||
: This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or 10/9 = ~250¢, two of which make ~4/3. 5/4 is equated to 1 octave minus 3 generators. An obvious 7-limit interpretation of the generator is 7/6, which makes Slendro aka Semaphore | : This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or 10/9 = ~250¢, two of which make ~4/3. 5/4 is equated to 1 octave minus 3 generators. An obvious 7-limit interpretation of the generator is 7/6, which makes Slendro aka Semaphore or Zozo. | ||
; [[Immunity family|Immunity or Sasa-yoyo family]] (P8, P4/2) | ; [[Immunity family|Immunity or Sasa-yoyo family]] (P8, P4/2) | ||
: This tempers out the immunity comma, {{Monzo|16 -13 2}} (1638400/1594323). Its generator is ~729/640 = ~247¢, two of which make ~4/3. 5/4 is equated to 3 octaves minus 13 generators. An obvious 7-limit interpretation of the generator is 7/6, which leads to Slendro aka Semaphore | : This tempers out the immunity comma, {{Monzo|16 -13 2}} (1638400/1594323). Its generator is ~729/640 = ~247¢, two of which make ~4/3. 5/4 is equated to 3 octaves minus 13 generators. An obvious 7-limit interpretation of the generator is 7/6, which leads to Slendro aka Semaphore or Zozo. | ||
; [[Dicot family|Dicot or Yoyo family]] (P8, P5/2) | ; [[Dicot family|Dicot or Yoyo family]] (P8, P5/2) | ||
: The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, [[25/24]] (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 OR two 6/5's and 3/2). This temperament hence equates major and minor thirds, evening them out into a neutral-sized 3rd of ~350¢ that is taken to approximate both. [[7edo|7EDO]] makes for a "good" dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the "neutral" dicot 3rds span a 3/2. Tunings include 7EDO, [[10edo|10EDO]], and [[17edo|17EDO]]. An obvious 2.3.11 | : The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, [[25/24]] (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 OR two 6/5's and 3/2). This temperament hence equates major and minor thirds, evening them out into a neutral-sized 3rd of ~350¢ that is taken to approximate both. [[7edo|7EDO]] makes for a "good" dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the "neutral" dicot 3rds span a 3/2. Tunings include 7EDO, [[10edo|10EDO]], and [[17edo|17EDO]]. An obvious 2.3.11 interpretation of the generator is ~11/9, which leads to Rastmic aka Neutral or Lulu. | ||
; [[Augmented family|Augmented or Trigu family]] (P8/3, P5) | ; [[Augmented family|Augmented or Trigu family]] (P8/3, P5) | ||
Line 115: | Line 115: | ||
: The kleismic family of temperaments tempers out the [[kleisma]] {{Monzo|-6 -5 6}} = 15625/15552, which is the difference between six 6/5's and 3/1. It takes a slightly sharpened minor third as a generator, optimally tuned about 1.4 cents sharp. 5/4 is equated to 5 generators minus 1 octave. The kleismic family includes [[15edo|15]], [[19edo|19]], [[34edo|34]], [[49edo|49]], [[53edo|53]], [[72edo|72]], [[87edo|87]] and [[140edo|140]] EDOs among its possible tunings. | : The kleismic family of temperaments tempers out the [[kleisma]] {{Monzo|-6 -5 6}} = 15625/15552, which is the difference between six 6/5's and 3/1. It takes a slightly sharpened minor third as a generator, optimally tuned about 1.4 cents sharp. 5/4 is equated to 5 generators minus 1 octave. The kleismic family includes [[15edo|15]], [[19edo|19]], [[34edo|34]], [[49edo|49]], [[53edo|53]], [[72edo|72]], [[87edo|87]] and [[140edo|140]] EDOs among its possible tunings. | ||
; [[Semicomma family| | ; [[Semicomma family|Orson, semicomma or Lasepyo family]] (P8, P12/7) | ||
: The [[semicomma]] (also known as Fokker's comma), 2109375/2097152 = {{Monzo|-21 3 7}}, is tempered out by the members of the semicomma family. Its generator is ~75/64, seven of which equals ~3/1. 5/4 is equated to 1 octave minus 3 generators. This temperament doesn't have much independent existence as a 5-limit temperament, since its generator has a natural interpretation as ~7/6, leading to [[orwell|Orwell or Sepru]] temperament. | : The [[semicomma]] (also known as Fokker's comma), 2109375/2097152 = {{Monzo|-21 3 7}}, is tempered out by the members of the semicomma family. Its generator is ~75/64, seven of which equals ~3/1. 5/4 is equated to 1 octave minus 3 generators. This temperament doesn't have much independent existence as a 5-limit temperament, since its generator has a natural interpretation as ~7/6, leading to [[orwell|Orwell or Sepru]] temperament. | ||