436edo: Difference between revisions

+prime error table, +RTT table
Line 1: Line 1:
'''436edo''' is the [[EDO|equal division of the octave]] into 436 parts of 2.7522935780 [[cent]]s each. The patent val has a distinct flat tendency, in the sense that if the [[octave]] is pure, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37 are all flat. It is consistent to the [[23-odd-limit|23-limit]], tempering out 32805/32768 and |1 -68 46> in the 5-limit; 390625/388962, 420175/419904, and 2100875/2097152 in the 7-limit; 1375/1372, 6250/6237, 41503/41472, and 322102/321489 in the 11-limit; 625/624, 1716/1715, 2080/2079, 10648/10647, and 15379/15360 in the 13-limit; 715/714, 1089/1088, 1225/1224, 1275/1274, 2025/2023, and 11271/11264 in the 17-limit; 1331/1330, 1445/1444, 1521/1520, 1540/1539, 1729/1728, 4394/4389, and 4875/4864 in the 19-limit; 875/874, 897/896, 1105/1104, 1863/1862, 2024/2023, 2185/2184, 2300/2299, and 2530/2527 in the 23-limit.
'''436edo''' is the [[EDO|equal division of the octave]] into 436 parts of 2.7522935780 [[cent]]s each.  
 
== Theory ==
The [[patent val]] of 436edo has a distinct flat tendency, in the sense that if the [[octave]] is pure, harmonics from 3 to 37 are all flat. It is consistent to the [[23-odd-limit]], tempering out 32805/32768 and {{monzo| 1 -68 4 }} in the 5-limit; [[390625/388962]], 420175/419904, and 2100875/2097152 in the 7-limit; 1375/1372, 6250/6237, 41503/41472, and 322102/321489 in the 11-limit; [[625/624]], [[1716/1715]], [[2080/2079]], [[10648/10647]], and 15379/15360 in the 13-limit; [[715/714]], [[1089/1088]], [[1225/1224]], 1275/1274, [[2025/2023]], and 11271/11264 in the 17-limit; 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 4394/4389, and 4875/4864 in the 19-limit; 875/874, 897/896, 1105/1104, 1863/1862, 2024/2023, 2185/2184, 2300/2299, and 2530/2527 in the 23-limit.


436edo is accurate for some intervals including [[3/2]], [[7/4]], [[11/10]], [[13/10]], [[18/17]], and [[19/18]], so it is especially suitable for the 2.3.7.11/5.13/5.17.19 subgroup.
436edo is accurate for some intervals including [[3/2]], [[7/4]], [[11/10]], [[13/10]], [[18/17]], and [[19/18]], so it is especially suitable for the 2.3.7.11/5.13/5.17.19 subgroup.
=== Prime harmonics ===
{{Harmonics in equal|436}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -691 436 }}
| [{{val| 436 691 }}]
| +0.0379
| 0.0379
| 1.38
|-
| 2.3.5
| 32805/32768, {{monzo| 1 -68 46 }}
| [{{val| 436 691 1012 }}]
| +0.1678
| 0.1863
| 6.77
|-
| 2.3.5.7
| 32805/32768, 390625/388962, 420175/419904
| [{{val| 436 691 1012 1224 }}]
| +0.1275
| 0.1758
| 6.39
|-
| 2.3.5.7.11
| 1375/1372, 6250/6237, 32805/32768, 41503/41472
| [{{val| 436 691 1012 1224 1508 }}]
| +0.1517
| 0.1645
| 5.98
|-
| 2.3.5.7.11.13
| 625/624, 1375/1372, 2080/2079, 10648/10647, 15379/15360
| [{{val| 436 691 1012 1224 1508 1613 }}]
| +0.1749
| 0.1589
| 5.77
|-
| 2.3.5.7.11.13.17
| 625/624, 715/714, 1089/1088, 1225/1224, 2431/2430, 10648/10647
| [{{val| 422 669 980 1185 1460 1562 1725 }}]
| +0.1628
| 0.1501
| 5.45
|-
| 2.3.5.7.11.13.17.19
| 625/624, 715/714, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1729/1728
| [{{val| 422 669 980 1185 1460 1562 1725 1793 1852 }}]
| +0.1503
| 0.1443
| 5.24
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 51\436
| 140.37
| 243/224
| [[Tsaharuk]]
|-
| 1
| 181\436
| 498.17
| 4/3
| [[Helmholtz]]
|-
| 4
| 181\436<br>(37\436)
| 498.17<br>(101.83)
| 4/3<br>(35/33)
| [[Quadrant]]
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]