460edo: Difference between revisions

+prime error table; +links; +category
+RTT table and rank-2 temperaments
Line 1: Line 1:
The '''460 equal divisions of the octave''' divides the octave into 460 equal parts of 2.609 cents each.  
The '''460 equal divisions of the octave''' divides the octave into 460 equal parts of 2.609 cents each.  


460edo is a very strong 19-limit system and is uniquely [[consistent]] to the [[21-odd-limit]], with harmonics of 3 to 19 all tuned flat. It tempers out the [[schisma]], 32805/32768, in the 5-limit and [[4375/4374]] and 65536/65625 in the 7-limit, so that it [[support]]s [[pontiac temperament|pontiac]]. In the 11-limit it tempers of 43923/43904, [[3025/3024]] and [[9801/9800]]; in the 13-limit [[1001/1000]], [[4225/4224]] and [[10648/10647]]; in the 17-limit [[833/832]], [[1089/1088]], [[1225/1224]], [[1701/1700]], 2058/2057, 2431/2430, [[2601/2600]] and 4914/4913; and in the 19-limit 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the [[optimal patent val]] for various temperaments such as the rank five temperament tempering out 833/832 and 1001/1000.
460edo is a very strong 19-limit system and is uniquely [[consistent]] to the [[21-odd-limit]], with harmonics of 3 to 19 all tuned flat. It tempers out the [[schisma]], 32805/32768, in the 5-limit and [[4375/4374]] and 65536/65625 in the 7-limit, so that it [[support]]s [[pontiac]]. In the 11-limit it tempers of 43923/43904, [[3025/3024]] and [[9801/9800]]; in the 13-limit [[1001/1000]], [[4225/4224]] and [[10648/10647]]; in the 17-limit [[833/832]], [[1089/1088]], [[1225/1224]], [[1701/1700]], 2058/2057, 2431/2430, [[2601/2600]] and 4914/4913; and in the 19-limit 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the [[optimal patent val]] for various temperaments such as the rank five temperament tempering out 833/832 and 1001/1000.


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|460}}
{{Harmonics in equal|460}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -729 460 }}
| [{{val| 460 729 }}]
| +0.0681
| 0.0681
| 2.61
|-
| 2.3.5
| 32805/32768, {{monzo| 6 68 -49 }}
| [{{val| 460 729 1068 }}]
| +0.0780
| 0.0573
| 2.20
|-
| 2.3.5.7
| 4375/4374, 32805/32768, {{monzo| -4 -2 -9 10 }}
| [{{val| 460 729 1068 1291 }}]
| +0.1475
| 0.1303
| 4.99
|-
| 2.3.5.7.11
| 3025/3024, 4375/4374, 32805/32768, 184877/184320
| [{{val| 460 729 1068 1291 1591 }}]
| +0.1691
| 0.1243
| 4.76
|-
| 2.3.5.7.11.13
| 1001/1000, 3025/3024, 4225/4224, 4375/4374, 26411/26364
| [{{val| 460 729 1068 1291 1591 1702 }}]
| +0.1647
| 0.1139
| 4.36
|-
| 2.3.5.7.11.13.17
| 833/832, 1001/1000, 1089/1088, 1225/1224, 1701/1700, 4225/4224
| [{{val| 460 729 1068 1291 1591 1702 1880 }}]
| +0.1624
| 0.1056
| 4.05
|-
| 2.3.5.7.11.13.17.19
| 833/832, 1001/1000, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1617/1615
| [{{val| 460 729 1068 1291 1591 1702 1880 1954 }}]
| +0.1457
| 0.1082
| 4.15
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 121\460
| 315.65
| 6/5
| [[Egads]]
|-
| 1
| 191\460
| 498.26
| 4/3
| [[Helmholtz]] / [[pontiac]]
|-
| 10
| 121\460<br>(17\460)
| 315.65<br>(44.35)
| 6/5<br>(40/39)
| [[Deca]]
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]