No edit summary
No edit summary
Line 4: Line 4:


I explored and documented the [[sensamagic dominant chord]]. I explored the [[canou family]] of temperaments, and a few others in [[User:FloraC/Temperament proposal]].  
I explored and documented the [[sensamagic dominant chord]]. I explored the [[canou family]] of temperaments, and a few others in [[User:FloraC/Temperament proposal]].  
Long term projects:
* Cleanup for all temperament pages
* Rework scale trees for mos pages
* Work out RTT tables for all edos listed in the 13-limit page (relative error < 5.5% and cut off at 494)


== Tools ==
== Tools ==
Line 33: Line 38:


=== 3-limit TE tuning of ets ===
=== 3-limit TE tuning of ets ===
Given a val A, we have Tenney-weighted val V = AW, where W is the Tenney-weighting matrix.  
{{Databox|Detail|
 
Given a val A, we have Tenney-weighted val V &#61; AW, where W is the Tenney-weighting matrix.  


If T is the Tenney-weighted tuning map, then for any et, for obvious reasons,  
If T is the Tenney-weighted tuning map, then for any et, for obvious reasons,  


[math]t_2/v_2 = t_1/v_1[/math]
[math]t_2/v_2 &#61; t_1/v_1[/math]


Let ''c'' be the coefficient of TE-weighted tuning map ''c'' = ''t''<sub>2</sub>/''t''<sub>1</sub> = ''v''<sub>2</sub>/''v''<sub>1</sub>
Let ''c'' be the coefficient of TE-weighted tuning map ''c'' &#61; ''t''<sub>2</sub>/''t''<sub>1</sub> &#61; ''v''<sub>2</sub>/''v''<sub>1</sub>


Let ''e'' be the [[TE error]] in Breed's RMS, and J be the [[JIP]], then
Let ''e'' be the [[TE error]] in Breed's RMS, and J be the [[JIP]], then


[math]e = ||T - J||_\text {RMS} = \sqrt {\frac {(t_1 - 1)^2 + (t_2 - 1)^2)}{2}}[/math]
[math]e &#61; {{!}}{{!}}T - J{{!}}{{!}}_\text {RMS} &#61; \sqrt {\frac {(t_1 - 1)^2 + (t_2 - 1)^2)}{2} }[/math]


Since  
Since  
Line 49: Line 56:
[math]
[math]
(t_1 - 1)^2 + (t_2 - 1)^2 \\
(t_1 - 1)^2 + (t_2 - 1)^2 \\
= t_1^2 - 2t_1 + 1 + c^2 t_1^2 - 2c t_1 + 1 \\
&#61; t_1^2 - 2t_1 + 1 + c^2 t_1^2 - 2c t_1 + 1 \\
= (c^2 + 1)t_1^2 - 2(c + 1)t_1 + 2
&#61; (c^2 + 1)t_1^2 - 2(c + 1)t_1 + 2
[/math]
[/math]


has minimum at  
has minimum at  


[math]t_1 = \frac{c + 1}{c^2 + 1} = \frac {v_1 (v_1 + v_2)}{v_1^2 + v_2^2}[/math]
[math]t_1 &#61; \frac{c + 1}{c^2 + 1} &#61; \frac {v_1 (v_1 + v_2)}{v_1^2 + v_2^2}[/math]


and ''f'' (''x'') = sqrt (''x''/2) is a monotonously increasing function
and ''f'' (''x'') &#61; sqrt (''x''/2) is a monotonously increasing function


''e'' has the same minimum point.  
''e'' has the same minimum point.  
Line 64: Line 71:


[math]
[math]
t_i = \frac {v_i (v_1 + v_2)}{v_1^2 + v_2^2}, i = 1, 2 \\
t_i &#61; \frac {v_i (v_1 + v_2)}{v_1^2 + v_2^2}, i &#61; 1, 2 \\
e = \frac {|v_1 - v_2|}{\sqrt {2(v_1^2 + v_2^2)}}
e &#61; \frac { {{!}}v_1 - v_2{{!}} }{\sqrt {2(v_1^2 + v_2^2)} }
[/math]
[/math]
}}


=== 3-limit TOP tuning of ets ===
=== 3-limit TOP tuning of ets ===
{{Databox|Detail|
This part is deduced from Paul Erlich's ''Middle Path''.  
This part is deduced from Paul Erlich's ''Middle Path''.  


[math]
[math]
t_i = \frac {2v_i}{v_1 + v_2}, i = 1, 2 \\
t_i &#61; \frac {2v_i}{v_1 + v_2}, i &#61; 1, 2 \\
e = \frac {|v_1 - v_2|}{v_1 + v_2}
e &#61; \frac { {{!}}v_1 - v_2{{!}} }{v_1 + v_2}
[/math]
[/math]


This ''e'' is also the amount to stretch or compress each prime.  
This ''e'' is also the amount to stretch or compress each prime.  
}}


=== General TE tuning of ets ===
=== General TE tuning of ets ===
This time we have a sequence c = {''c''<sub>''n''</sub>}, where
{{Databox|Detail|


[math]c_i = v_i/v_1, i = 1, 2, \ldots, n[/math]
This time we have a sequence c &#61; {''c''<sub>''n''</sub>}, where
 
[math]c_i &#61; v_i/v_1, i &#61; 1, 2, \ldots, n[/math]


And just proceed as before,  
And just proceed as before,  


[math]t_1 = \frac {\sum \vec c}{\vec c^\mathsf T \vec c} = \frac {v_1 \sum V}{VV^\mathsf T}[/math]
[math]t_1 &#61; \frac {\sum \vec c}{\vec c^\mathsf T \vec c} &#61; \frac {v_1 \sum V}{VV^\mathsf T}[/math]


Substitute ''t''<sub>''i''</sub>/''c''<sub>''i''</sub> for ''t''<sub>1</sub>,  
Substitute ''t''<sub>''i''</sub>/''c''<sub>''i''</sub> for ''t''<sub>1</sub>,  


[math]
[math]
t_i = \frac {v_i \sum V}{VV^\mathsf T}, i = 1, 2, \ldots, n \\
t_i &#61; \frac {v_i \sum V}{VV^\mathsf T}, i &#61; 1, 2, \ldots, n \\
e = \sqrt {1 - \frac {(\sum V)^2}{n VV^\mathsf T}}
e &#61; \sqrt {1 - \frac {(\sum V)^2}{n VV^\mathsf T} }
[/math]
[/math]
}}


=== Notes ===
=== Notes ===