157edo: Difference between revisions
m →Regular temperament properties: correction |
+infobox, +links to rank-2 temps |
||
Line 1: | Line 1: | ||
The '''157 equal divisions of the octave''' ('''157edo'''), or the '''157(-tone) equal temperament''' ('''157tet''', '''157et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 157 parts of 7. | {{Infobox ET | ||
| Prime factorization = 157 (prime) | |||
| Step size = 7.64331¢ | |||
| Fifth = 92\157 (703.18¢) | |||
| Major 2nd = 27\157 (206¢) | |||
| Minor 2nd = 11\157 (84¢) | |||
| Augmented 1sn = 16\157 (122¢) | |||
}} | |||
The '''157 equal divisions of the octave''' ('''157edo'''), or the '''157(-tone) equal temperament''' ('''157tet''', '''157et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 157 parts of 7.64 [[cent]]s each. | |||
== Theory == | == Theory == | ||
157et tempers out 78732/78125 ([[sensipent comma]]) and | 157et tempers out 78732/78125 ([[sensipent comma]]) and {{monzo| 37 -16 -5 }} (quinticosiennic comma) in the 5-limit; [[2401/2400]], [[5120/5103]], and 110592/109375 in the 7-limit (supporting the [[hemififths]] and the [[catafourth]]). Using the [[patent val]], it tempers out [[176/175]], 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; [[351/350]], [[352/351]], [[847/845]], 1573/1568, and 2197/2187 in the 13-limit. | ||
157edo is the 37th [[prime EDO]]. | 157edo is the 37th [[prime EDO]]. | ||
Line 78: | Line 86: | ||
! Associated<br>ratio | ! Associated<br>ratio | ||
! Temperament | ! Temperament | ||
|- | |||
| 1 | |||
| 13\157 | |||
| 99.36 | |||
| 18/17 | |||
| [[Quinticosiennic]] | |||
|- | |||
| 1 | |||
| 23\157 | |||
| 175.80 | |||
| 72/65 | |||
| [[Quadrafifths]] | |||
|- | |- | ||
| 1 | | 1 | ||
Line 89: | Line 109: | ||
| 428.03 | | 428.03 | ||
| 2800/2187 | | 2800/2187 | ||
| [[ | | [[Geb]] / [[osiris]] | ||
|- | |- | ||
| 1 | | 1 |