Generator-offset property: Difference between revisions

Inthar (talk | contribs)
m Undo revision 76357 by Inthar (talk)
Tag: Undo
Inthar (talk | contribs)
Line 23: Line 23:
  O-O-...-O ((n-1)/2 notes).
  O-O-...-O ((n-1)/2 notes).


Label the notes (1, ''k'') and (2, ''k''), 1 ≤ ''k'' ≤ (chain length), for notes in the upper and lower chain respectively.
Label the notes (1, ''j'') and (2, ''j''), 1 ≤ ''j'' ≤ (chain length), for notes in the upper and lower chain respectively.


In case 1, let ''g''<sub>1</sub> = (2, 1) &minus; (1, 1) and ''g''<sub>2</sub> = (1, 2) &minus; (2, 1). We have the chain ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>3</sub>.  
In case 1, let ''g''<sub>1</sub> = (2, 1) &minus; (1, 1) and ''g''<sub>2</sub> = (1, 2) &minus; (2, 1). We have the chain ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>3</sub>.  


Let ''r'' be odd and ''r'' ≥ 3. Consider the following abstract sizes for the interval class reached by stacking ''r'' generators:
Let ''r'' be odd and ''r'' ≥ 3. Consider the following abstract sizes for the interval class (''k''-steps) reached by stacking ''r'' generators:
# from ''g''<sub>1</sub> ... ''g''<sub>1</sub>, we get ''a''<sub>1</sub> = (''r'' &minus; 1)/2*''g''<sub>0</sub> + ''g''<sub>1</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' &minus; 1)/2 ''g''<sub>2</sub>
# from ''g''<sub>1</sub> ... ''g''<sub>1</sub>, we get ''a''<sub>1</sub> = (''r'' &minus; 1)/2*''g''<sub>0</sub> + ''g''<sub>1</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' &minus; 1)/2 ''g''<sub>2</sub>
# from ''g''<sub>2</sub> ... ''g''<sub>2</sub>, we get ''a''<sub>2</sub> = (''r'' &minus; 1)/2*''g''<sub>0</sub> + ''g''<sub>2</sub> = (''r'' &minus; 1)/2 ''g''<sub>1</sub> + (''r'' + 1)/2 ''g''<sub>2</sub>
# from ''g''<sub>2</sub> ... ''g''<sub>2</sub>, we get ''a''<sub>2</sub> = (''r'' &minus; 1)/2*''g''<sub>0</sub> + ''g''<sub>2</sub> = (''r'' &minus; 1)/2 ''g''<sub>1</sub> + (''r'' + 1)/2 ''g''<sub>2</sub>
Line 33: Line 33:
# from ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub> ''g''<sub>3</sub> ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub>, we get ''a''<sub>4</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' &minus; 3)/2 ''g''<sub>2</sub> + ''g''<sub>3</sub>.  
# from ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub> ''g''<sub>3</sub> ''g''<sub>1</sub> (...odd # of gens...) ''g''<sub>1</sub>, we get ''a''<sub>4</sub> = (''r'' + 1)/2 ''g''<sub>1</sub> + (''r'' &minus; 3)/2 ''g''<sub>2</sub> + ''g''<sub>3</sub>.  


Choose a tuning where ''g''<sub>1</sub> and ''g''<sub>2</sub> are both very close to but not exactly 1/2*''g''<sub>0</sub>, resulting in a scale very close to the mos generated by 1/2 ''g''<sub>0</sub>. (i.e. ''g''<sub>1</sub> and ''g''<sub>2</sub> differ from 1/2*''g''<sub>0</sub> by ε, a quantity much smaller than the chroma of the ''n''/2-note mos generated by ''g''<sub>0</sub>, which is |''g''<sub>3</sub> &minus; ''g''<sub>2</sub>|). Thus we have 4 distinct sizes for k-steps:
Choose a tuning where ''g''<sub>1</sub> and ''g''<sub>2</sub> are both very close to but not exactly 1/2*''g''<sub>0</sub>, resulting in a scale very close to the mos generated by 1/2 ''g''<sub>0</sub>. (i.e. ''g''<sub>1</sub> and ''g''<sub>2</sub> differ from 1/2*''g''<sub>0</sub> by ε, a quantity much smaller than the chroma of the ''n''/2-note mos generated by ''g''<sub>0</sub>, which is |''g''<sub>3</sub> &minus; ''g''<sub>2</sub>|). Thus we have 4 distinct sizes for ''k''-steps:
# ''a''<sub>1</sub>, ''a''<sub>2</sub> and ''a''<sub>3</sub> are clearly distinct.
# ''a''<sub>1</sub>, ''a''<sub>2</sub> and ''a''<sub>3</sub> are clearly distinct.
# ''a''<sub>4</sub> &minus; ''a''<sub>3</sub> = ''g''<sub>1</sub> &minus; ''g''<sub>2</sub> != 0, since the scale is a non-trivial AG.  
# ''a''<sub>4</sub> &minus; ''a''<sub>3</sub> = ''g''<sub>1</sub> &minus; ''g''<sub>2</sub> != 0, since the scale is a non-trivial AG.  
Line 39: Line 39:
# ''a''<sub>4</sub> &minus; ''a''<sub>2</sub> = ''g''<sub>1</sub> &minus; 2 ''g''<sub>2</sub> + ''g''<sub>3</sub> = (''g''<sub>3</sub> &minus; ''g''<sub>2</sub>) + (''g''<sub>1</sub> &minus; ''g''<sub>2</sub>) = (chroma ± ε) != 0 by choice of tuning.
# ''a''<sub>4</sub> &minus; ''a''<sub>2</sub> = ''g''<sub>1</sub> &minus; 2 ''g''<sub>2</sub> + ''g''<sub>3</sub> = (''g''<sub>3</sub> &minus; ''g''<sub>2</sub>) + (''g''<sub>1</sub> &minus; ''g''<sub>2</sub>) = (chroma ± ε) != 0 by choice of tuning.


By applying this argument to 1-steps, we see that there must be 4 step sizes in some tuning, a contradiction. Thus ''g''<sub>1</sub> and ''g''<sub>2</sub> must themselves be step sizes. Thus we see that an even-cardinality, unconditionally MV3, AG scale must be of the form ''xy...xyxz''. But this pattern is not unconditionally MV3 if ''n'' ≥ 6, since 3-steps come in 4 sizes: ''xyx'', ''yxy'', ''yxz'' and  
By applying this argument to 1-steps, we see that there must be 4 step sizes in some tuning, a contradiction. Thus ''g''<sub>1</sub> and ''g''<sub>2</sub> must themselves be step sizes. Thus we see that an even-cardinality, unconditionally MV3, AG scale must be of the form ''xy...xyxz''. But this pattern is not unconditionally MV3 if ''n'' ≥ 6, since 3-steps come in 4 sizes: ''xyx'', ''yxy'', ''yxz'' and ''xzx''. Thus ''n'' = 4 and the scale is ''xyxz''.
''xzx''. Thus ''n'' = 4 and the scale is ''xyxz''.


In case 2, let (2, 1) &minus; (1, 1) = ''g''<sub>1</sub>, (1, 2) &minus; (2, 1) = ''g''<sub>2</sub> be the two alternating generators. Let ''g''<sub>3</sub> be the leftover generator after stacking alternating ''g''<sub>1</sub> and ''g''<sub>2</sub>. Then the generator circle looks like ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>3</sub>. Then the generators corresponding to a step are:
In case 2, let (2, 1) &minus; (1, 1) = ''g''<sub>1</sub>, (1, 2) &minus; (2, 1) = ''g''<sub>2</sub> be the two alternating generators. Let ''g''<sub>3</sub> be the leftover generator after stacking alternating ''g''<sub>1</sub> and ''g''<sub>2</sub>. Then the generator circle looks like ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g''<sub>1</sub> ''g''<sub>2</sub> ''g''<sub>3</sub>. Then the generators corresponding to a step are:
Line 51: Line 50:


Now we only need to see that AG + odd cardinality => unconditionally MV3. But the argument in case 2 above works for any interval class (unconditional MV3 wasn't used), hence any interval class comes in at most 3 sizes regardless of tuning.
Now we only need to see that AG + odd cardinality => unconditionally MV3. But the argument in case 2 above works for any interval class (unconditional MV3 wasn't used), hence any interval class comes in at most 3 sizes regardless of tuning.
== Conjectures ==
== Conjectures ==
=== Conjecture 2 ===
=== Conjecture 2 ===