Gallery of MOS transversals: Difference between revisions
m Clean up categories |
m Recategorization, improved markup and layout |
||
Line 1: | Line 1: | ||
By giving a [[Transversal|transversal]] for a [[MOSScales|MOS]] for a particular rank two temperament, we can define the MOS as the tempering, in that temperament, of the scale. This is not very interesting in itself; what is more interesting is that since only three primes--2 and two odd primes--can be used for the transversal, we can put the result into [[Scala|Scala]], and use its "Lattice and player" command under the Analyze pull-down menu to depict the MOS in terms of a lattice diagram. This can be used to better understand the chord relationships within the MOS. It should be noted that while only chords with two odd primes are depicted, larger chords are associated to them. When 3 and 5 are relatively complex as in miracle, for instance, 7 is likely to be brought along with them, and hence the lattice picture of the 5-limit triads can be used to understand relations between tetrads in miracle and other temperaments of a similar kind. Choosing two primes which bound a chord of interest often works: for instance 3 and 5 bound 7 in miracle, so that the 5-limit transversal shows 7-limit tetrads. On the other hand, in the 11-limit, 5 and 11 bound both 7 and 9, so that the complete 11-limit sextads are represented by the triads of the 2.5.11 transveral. | By giving a [[Transversal|transversal]] for a [[MOSScales|MOS]] for a particular rank two temperament, we can define the MOS as the tempering, in that temperament, of the scale. This is not very interesting in itself; what is more interesting is that since only three primes--2 and two odd primes--can be used for the transversal, we can put the result into [[Scala|Scala]], and use its "Lattice and player" command under the Analyze pull-down menu to depict the MOS in terms of a lattice diagram. This can be used to better understand the chord relationships within the MOS. It should be noted that while only chords with two odd primes are depicted, larger chords are associated to them. When 3 and 5 are relatively complex as in miracle, for instance, 7 is likely to be brought along with them, and hence the lattice picture of the 5-limit triads can be used to understand relations between tetrads in miracle and other temperaments of a similar kind. Choosing two primes which bound a chord of interest often works: for instance 3 and 5 bound 7 in miracle, so that the 5-limit transversal shows 7-limit tetrads. On the other hand, in the 11-limit, 5 and 11 bound both 7 and 9, so that the complete 11-limit sextads are represented by the triads of the 2.5.11 transveral. | ||
Line 6: | Line 4: | ||
=[[Kleismic_family#Catakleismic|Catakleismic]]= | =[[Kleismic_family#Catakleismic|Catakleismic]]= | ||
[[catakleismic34fok|catakleismic34fok]] | * [[catakleismic34fok|catakleismic34fok]] | ||
* [[kleismic34trans|kleismic34trans]] | |||
[[kleismic34trans|kleismic34trans]] | * [[catakleismic34trans|catakleismic34trans]] | ||
* [[catakleismic34semitransversal|catakleismic34semitransversal]] | |||
[[catakleismic34trans|catakleismic34trans]] | * [[catakleismic34transex|catakleismic34transex]] | ||
[[catakleismic34semitransversal|catakleismic34semitransversal]] | |||
[[catakleismic34transex|catakleismic34transex]] | |||
=[[Ragismic_microtemperaments#Ennealimmal|Ennealimmal]]= | =[[Ragismic_microtemperaments#Ennealimmal|Ennealimmal]]= | ||
[[ennealimmal45trans|ennealimmal45trans]] | * [[ennealimmal45trans|ennealimmal45trans]] | ||
=[[Magic_family#Magic|Magic]]= | =[[Magic_family#Magic|Magic]]= | ||
[[magic19trans37|magic19trans37]] | * [[magic19trans37|magic19trans37]] | ||
* [[magic22trans37|magic22trans37]] | |||
[[magic22trans37|magic22trans37]] | * [[magic19trans37ex|magic19trans37ex]] | ||
* [[magic22trans37ex|magic22trans37ex]] | |||
[[magic19trans37ex|magic19trans37ex]] | |||
[[magic22trans37ex|magic22trans37ex]] | |||
=[[Meantone_family#Septimal meantone|Meantone]]= | =[[Meantone_family#Septimal meantone|Meantone]]= | ||
[[meantone19trans37|meantone19trans37]] | * [[meantone19trans37|meantone19trans37]] | ||
* [[meantone31trans37|meantone31trans37]] | |||
[[meantone31trans37|meantone31trans37]] | * [[meantone19trans37ex|meantone19trans37ex]] | ||
* [[meantone31trans37ex|meantone31trans37ex]] | |||
[[meantone19trans37ex|meantone19trans37ex]] | |||
[[meantone31trans37ex|meantone31trans37ex]] | |||
=[[Gamelismic_clan#Miracle|Miracle]]= | =[[Gamelismic_clan#Miracle|Miracle]]= | ||
[[miracle21trans|miracle21trans]] | * [[miracle21trans|miracle21trans]] | ||
* [[miracle31trans|miracle31trans]] | |||
[[miracle31trans|miracle31trans]] | * [[miracle21trans511|miracle21trans511]] | ||
* [[miracle31trans511|miracle31trans511]] | |||
[[miracle21trans511|miracle21trans511]] | |||
[[miracle31trans511|miracle31trans511]] | |||
=[[Würschmidt_family#Hemiwürschmidt|Hemiwürschmidt]]= | =[[Würschmidt_family#Hemiwürschmidt|Hemiwürschmidt]]= | ||
[[hemiwuerschmidt19trans37|hemiwuerschmidt19trans37]] | * [[hemiwuerschmidt19trans37|hemiwuerschmidt19trans37]] | ||
* [[hemiwuerschmidt25trans37|hemiwuerschmidt25trans37]] | |||
[[hemiwuerschmidt25trans37|hemiwuerschmidt25trans37]] | * [[hemiwuerschmidt31trans37|hemiwuerschmidt31trans37]] | ||
[[hemiwuerschmidt31trans37|hemiwuerschmidt31trans37]] | |||
=[[Starling_temperaments#Myna temperament|Myna]]= | =[[Starling_temperaments#Myna temperament|Myna]]= | ||
[[myna19trans|myna19trans]] | * [[myna19trans|myna19trans]] | ||
* [[myna23trans|myna23trans]] | |||
[[myna23trans|myna23trans]] | * [[myna27trans|myna27trans]] | ||
* [[myna19trans37|myna19trans37]] | |||
[[myna27trans|myna27trans]] | * [[myna23trans37|myna23trans37]] | ||
* [[myna27trans37|myna27trans37]] | |||
[[myna19trans37|myna19trans37]] | |||
[[myna23trans37|myna23trans37]] | |||
[[myna27trans37|myna27trans37]] | |||
=[[Semicomma_family|Orwell]]= | =[[Semicomma_family|Orwell]]= | ||
[[orwell13trans|orwell13trans]] | * [[orwell13trans|orwell13trans]] | ||
* [[orwell22trans|orwell22trans]] | |||
[[orwell22trans|orwell22trans]] | * [[orwell31trans|orwell31trans]] | ||
* [[orwell13trans57|orwell13trans57]] | |||
[[orwell31trans|orwell31trans]] | * [[orwell22trans57|orwell22trans57]] | ||
* [[orwell31trans57|orwell31trans57]] | |||
[[orwell13trans57|orwell13trans57]] | * [[orwell13trans57ex|orwell13trans57ex]] | ||
[[orwell22trans57|orwell22trans57]] | |||
[[orwell31trans57|orwell31trans57]] | |||
[[ | [[Category:Lists of scales|MOS transversals]] | ||
[[Category:Just intonation scales| ]] | |||
[[Category:Transversal scales| ]] | |||
[[Category:MOS]] | [[Category:MOS]] | ||