125edo: Difference between revisions

+prime error table, +temperament section
Line 1: Line 1:
The ''125 equal temperament'' divides the octave into 125 equal parts of exactly 9.6 cents each. It defines the [[Optimal_patent_val|optimal patent val]] for 7- and 11-limit [[Marvel_temperaments|slender temperament]]. It tempers out 15625/15552 in the 5-limit; 225/224 and 4375/4374 in the 7-limit; 385/384 in the 11-limit; and 275/273 in the 13-limit. Being the cube closest to division of the octave by the Germanic [https://en.wikipedia.org/wiki/Long_hundred long hundred], it has a unit step which is the cubic (fine) relative cent of [[1edo]].
The '''125 equal temperament''' divides the octave into 125 equal parts of exactly 9.6 cents each.  
 
== Theory ==
125edo defines the [[optimal patent val]] for 7- and 11-limit [[slender]] temperament. It tempers out [[15625/15552]] in the 5-limit; [[225/224]] and [[4375/4374]] in the 7-limit; [[385/384]] in the 11-limit; and [[275/273]] in the 13-limit. Being the cube closest to division of the octave by the Germanic [[Wikipedia: Long hundred|long hundred]], it has a unit step which is the cubic (fine) relative cent of [[1edo]].  
 
=== Prime harmonics ===
{{Primes in edo|125|prec=2}}
 
== Regular temperament properties ==
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 4\125
| 38.4
| 49/48
| [[Slender]]
|-
| 1
| 19\125
| 182.4
| 10/9
| [[Mitonic]]
|-
| 1
| 24\125
| 230.4
| 8/7
| [[Gamera]]
|-
| 1
| 33\125
| 316.8
| 6/5
| [[Hanson]] / [[catakleismic]]
|-
| 1
| 52\125
| 499.2
| 4/3
| [[Gracecordial]]
|-
| 1
| 61\125
| 585.6
| 7/5
| [[Merman]]
|}
 
[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:theory]]
[[Category:Theory]]
[[Category:Catakleismic]]