16ed5/3: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
'''16ed5/3''' (or less accurately '''16edVI''') is the [[EdVI|equal division of the just major sixth]] into sixteen parts of 55.2724 [[cent|cents]] each, corresponding to 21.7106 [[edo]]. It is very closely related to the [[Escapade family|escapade temperament]]. | '''16ed5/3''' (or less accurately '''16edVI''') is the [[EdVI|equal division of the just major sixth]] into sixteen parts of 55.2724 [[cent|cents]] each, corresponding to 21.7106 [[edo]]. It is very closely related to the [[Escapade family|escapade temperament]]. | ||
It very accurately approximates a number of low complexity just intervals, such as: 4/3 (<1¢), 5/4 (<1¢), 11/8 (<2¢), 11/10 (<1¢), 16/15 (<2¢), and 25/16 (<2¢). It also approximates the just fifth and octave to within 20¢, making it a flexible non-octave scale. | It very accurately approximates a number of low complexity just intervals, such as: [[4/3]] (<1¢), [[5/4]] (<1¢), [[11/8]] (<2¢), [[11/10]] (<1¢), [[16/15]] (<2¢), and [[25/16]] (<2¢). It also approximates the [[3/2|just fifth]] and [[2/1|octave]] to within 20¢, making it a flexible non-octave scale. Notably, having a period of [[5/3]], the diatonic minor third ([[6/5]]) is the period-reduced diatonic octave. This means both are approximated identically (16¢ sharp). | ||
== Intervals == | == Intervals == | ||
16ed5/3 can be notated using steps 7 (~5/4) and 9 (~4/3) as generators, as these are accurate to within 0.6¢. The resulting scale is a heptatonic 2L 5s (similar to the octave repeating antidiatonic). | 16ed5/3 can be notated using steps 7 (~5/4) and 9 (~4/3) as generators, as these are accurate to within 0.6¢. The resulting scale is a heptatonic 2L 5s (similar to the octave repeating antidiatonic). | ||
{| class="wikitable" | {| class="wikitable center-all right-2" | ||
!Degree | ! Degree | ||
!Cents | ! Cents | ||
!Approximate intervals | ! Approximate intervals | ||
!Mos-interval | ! Mos-interval | ||
!Diatonic interval | ! Diatonic interval | ||
!Notation | ! Notation | ||
|- style="background: #eee" | |||
| '''0''' | |||
| '''0.0000''' | |||
| '''1''' | |||
| '''unison''' | |||
| '''unison''' | |||
| '''A''' | |||
|- | |- | ||
| | | 1 | ||
| | | 55.2724 | ||
| | | 31/30, 33/32 | ||
| | | aug unison | ||
| | | quatertone | ||
| | | A# | ||
|- | |- | ||
| | | 2 | ||
| | | 110.5448 | ||
| | | 16/15 | ||
| | | min mos2nd | ||
| | | minor second | ||
| | | Bb | ||
|- | |- | ||
| | | 3 | ||
| | | 165.8173 | ||
| | | 11/10 | ||
| | | maj mos2nd | ||
| | | neutral second | ||
| | | B | ||
|- | |- | ||
| | | 4 | ||
| | | 221.0897 | ||
| | | 8/7, 17/15 | ||
| | | min mos3rd | ||
| | | major second | ||
| | | Cb | ||
|- | |- | ||
| | | 5 | ||
| | | 276.3621 | ||
| | | 75/64, 7/6, 20/17 | ||
| | | maj mos3rd | ||
| | | subminor third | ||
| | | C | ||
|- | |- | ||
| | | 6 | ||
| | | 331.6345 | ||
| | | 6/5, 40/33, 17/14 | ||
| | | dim mos4th | ||
| | | minor third | ||
| | | Db | ||
|- style="background: #eee" | |||
| 7 | |||
| ''386.9069'' | |||
| ''5/4'' | |||
| ''perf mos4th'' | |||
| major third | |||
| D | |||
|- | |- | ||
| | | 8 | ||
| | | 442.1794 | ||
| | | 9/7, 22/17 | ||
| | | aug mos4th | ||
| | | supermajor third | ||
| | | D# | ||
|- style="background: #eee" | |||
| 9 | |||
| ''497.4517'' | |||
| ''4/3'' | |||
| ''perf mos5th'' | |||
| just fourth | |||
| E | |||
|- | |- | ||
| | | 10 | ||
| | | 552.7242 | ||
| | | 25/18, 11/8, 18/13 | ||
| | | aug mos5th | ||
| | | wide fourth | ||
| | | E# | ||
|- | |- | ||
| | | 11 | ||
| | | 607.9966 | ||
| | | 10/7, 17/12 | ||
| | | min mos6th | ||
| | | large tritone | ||
| | | Fb | ||
|- | |- | ||
| | | 12 | ||
| | | 663.2690 | ||
| | | 72/49, 22/15 | ||
| | | maj mos6th | ||
| | | narrow fifth | ||
| | | F | ||
|- | |- | ||
| | | 13 | ||
| | | 718.5415 | ||
| | | 3/2, 50/33 | ||
| | | min mos7th | ||
| | | acute fifth | ||
| | | F# | ||
|- | |- | ||
| | | 14 | ||
| | | 773.8129 | ||
| | | 25/16 | ||
| | | maj mos7th | ||
| | | subminor sixth | ||
| | | G | ||
|- | |- | ||
| | | 15 | ||
| | | 829.0863 | ||
| | | 8/5, 13/8 | ||
| | | dim mos8ave | ||
| | | minor sixth | ||
| | | G# | ||
|- style="background: #eee" | |||
| '''16''' | |||
| '''884.3587''' | |||
| '''5/3''' | |||
| '''mosoctave''' | |||
| '''major sixth''' | |||
| '''A''' | |||
|- | |- | ||
| | | 17 | ||
| | | 939.6311 | ||
| | | 12/7, 19/11 | ||
| | | aug mos8ave | ||
| | | supermajor sixth | ||
| | | A# | ||
|- | |- | ||
| | | 18 | ||
| | | 994.9035 | ||
| | | 16/9 | ||
| | | min mos9th | ||
| | | minor seventh | ||
| | | Bb | ||
|- | |- | ||
| | | 19 | ||
| | | 1050.1760 | ||
| | | 11/6 | ||
| | | maj mos9th | ||
| | | neutral seventh | ||
| | | B | ||
|- | |- | ||
| | | 20 | ||
| | | 1105.4484 | ||
| | | 40/21, 17/9 | ||
| | | min mos10th | ||
| | | major seventh | ||
| | | Cb | ||
|- | |- | ||
| | | 21 | ||
| | | 1160.7208 | ||
| | | 35/18, 43/22 | ||
| | | maj mos10th | ||
| | | narrow octave | ||
| | | C | ||
|- | |- | ||
| 22 | |||
| 1215.9932 | |||
| 2/1 | |||
| dim mos11th | |||
| octave | |||
| C# | |||
|22 | |||
|1215.9932 | |||
|2/1 | |||
|dim mos11th | |||
|octave | |||
|C# | |||
|} | |} | ||
These intervals are close to a few other related non-octave scales: | These intervals are close to a few other related non-octave scales: | ||
{| class="wikitable" | {| class="wikitable left-all" | ||
|+ | |+ | ||
! | ! | ||
!16ed16\22 | ! 16ed16\22 | ||
![[7ed5/4]] | ! [[7ed5/4]] | ||
!16ed5/3 | ! 16ed5/3 | ||
![[Noleta|9ed4/3]] | ! [[Noleta|9ed4/3]] | ||
![[43ed4]] | ! [[43ed4]] | ||
!16ed16\21 | ! 16ed16\21 | ||
|- | |- | ||
|1 | | 1 | ||
|54.54545 | | 54.54545 | ||
|55.188 | | 55.188 | ||
|55.2724 | | 55.2724 | ||
|55.338 | | 55.338 | ||
|55.81395 | | 55.81395 | ||
|57.1429 | | 57.1429 | ||
|- | |- | ||
|2 | | 2 | ||
|109.0909 | | 109.0909 | ||
|110.375 | | 110.375 | ||
|110.5448 | | 110.5448 | ||
|110.677 | | 110.677 | ||
|111.6729 | | 111.6729 | ||
|114.2857 | | 114.2857 | ||
|- | |- | ||
|3 | | 3 | ||
|163.6364 | | 163.6364 | ||
|165.563 | | 165.563 | ||
|165.8173 | | 165.8173 | ||
|166.015 | | 166.015 | ||
|167.4419 | | 167.4419 | ||
|171.4286 | | 171.4286 | ||
|- | |- | ||
|4 | | 4 | ||
|218.1818 | | 218.1818 | ||
|220.751 | | 220.751 | ||
|221.0897 | | 221.0897 | ||
|221.353 | | 221.353 | ||
|223.2558 | | 223.2558 | ||
|228.5714 | | 228.5714 | ||
|- | |- | ||
|5 | | 5 | ||
|272.7273 | | 272.7273 | ||
|275.938 | | 275.938 | ||
|276.3621 | | 276.3621 | ||
|276.692 | | 276.692 | ||
|279.0698 | | 279.0698 | ||
|285.7143 | | 285.7143 | ||
|- | |- | ||
|6 | | 6 | ||
|327.2727 | | 327.2727 | ||
|331.126 | | 331.126 | ||
|331.6345 | | 331.6345 | ||
|332.030 | | 332.030 | ||
|334.8837 | | 334.8837 | ||
|342.8571 | | 342.8571 | ||
|- | |- | ||
|7 | | 7 | ||
|381.8182 | | 381.8182 | ||
|386.314 | | 386.314 | ||
|386.9069 | | 386.9069 | ||
|387.368 | | 387.368 | ||
|390.6977 | | 390.6977 | ||
|400 | | 400 | ||
|- | |- | ||
|8 | | 8 | ||
|436.3636 | | 436.3636 | ||
|441.501 | | 441.501 | ||
|442.1794 | | 442.1794 | ||
|442.707 | | 442.707 | ||
|446.5116 | | 446.5116 | ||
|457.1429 | | 457.1429 | ||
|- | |- | ||
|9 | | 9 | ||
|490.9091 | | 490.9091 | ||
|496.689 | | 496.689 | ||
|497.4517 | | 497.4517 | ||
|498.045 | | 498.045 | ||
|502.3256 | | 502.3256 | ||
|514.2857 | | 514.2857 | ||
|- | |- | ||
|10 | | 10 | ||
|545.54545 | | 545.54545 | ||
|551.877 | | 551.877 | ||
|552.7242 | | 552.7242 | ||
|553.383 | | 553.383 | ||
|558.1395 | | 558.1395 | ||
|571.4286 | | 571.4286 | ||
|- | |- | ||
|11 | | 11 | ||
|600 | | 600 | ||
|607.064 | | 607.064 | ||
|607.9966 | | 607.9966 | ||
|608.722 | | 608.722 | ||
|613.9535 | | 613.9535 | ||
|628.5714 | | 628.5714 | ||
|- | |- | ||
|12 | | 12 | ||
|654.54545 | | 654.54545 | ||
|662.252 | | 662.252 | ||
|663.269 | | 663.269 | ||
|664.060 | | 664.060 | ||
|669.7674 | | 669.7674 | ||
|685.7143 | | 685.7143 | ||
|- | |- | ||
|13 | | 13 | ||
|709.0909 | | 709.0909 | ||
|717.440 | | 717.440 | ||
|718.54145 | | 718.54145 | ||
|719.398 | | 719.398 | ||
|725.5814 | | 725.5814 | ||
|742.8571 | | 742.8571 | ||
|- | |- | ||
|14 | | 14 | ||
|763.6364 | | 763.6364 | ||
|772.627 | | 772.627 | ||
|773.8129 | | 773.8129 | ||
|774.737 | | 774.737 | ||
|781.39535 | | 781.39535 | ||
|800 | | 800 | ||
|- | |- | ||
|15 | | 15 | ||
|818.1818 | | 818.1818 | ||
|827.815 | | 827.815 | ||
|829.0863 | | 829.0863 | ||
|830.075 | | 830.075 | ||
|837.7209 | | 837.7209 | ||
|857.1429 | | 857.1429 | ||
|- | |- | ||
|16 | | 16 | ||
|872.7273 | | 872.7273 | ||
|883.003 | | 883.003 | ||
|884.3587 | | 884.3587 | ||
|885.413 | | 885.413 | ||
|893.0233 | | 893.0233 | ||
|914.2857 | | 914.2857 | ||
|} | |} | ||
== MOS Scales == | == MOS Scales == | ||
16edVI supports the same [[MOS scale|MOS scales]] as [[16edo]], as such it contains the following scales: | 16edVI supports the same [[MOS scale|MOS scales]] as [[16edo]], as such it contains the following scales: | ||
{| class="wikitable" | {| class="wikitable center-all right-3" | ||
!Periods | ! Periods | ||
per octave | per octave | ||
!Generator | ! Generator | ||
!Pattern | ! Pattern | ||
|- | |- | ||
|1 | | 1 | ||
|1\16 | | 1\16 | ||
|1L ns (pathological) | | 1L ns (pathological) | ||
|- | |- | ||
|1 | | 1 | ||
|3\16 | | 3\16 | ||
|1L 4s, 5L 1s | | 1L 4s, 5L 1s | ||
|- | |- | ||
|1 | | 1 | ||
|5\16 | | 5\16 | ||
|3L 4s, 3L 7s | | 3L 4s, 3L 7s | ||
|- | |- | ||
|1 | | 1 | ||
|7\16 | | 7\16 | ||
|2L 5s, 7L 2s | | 2L 5s, 7L 2s | ||
|- | |- | ||
|2 | | 2 | ||
|1\16 | | 1\16 | ||
|2L 8s, 2L 10s, 2L 12s | | 2L 8s, 2L 10s, 2L 12s | ||
|- | |- | ||
|2 | | 2 | ||
|3\16 | | 3\16 | ||
|4L 2s, 6L 4s | | 4L 2s, 6L 4s | ||
|- | |- | ||
|4 | | 4 | ||
|1\16 | | 1\16 | ||
|4L 4s, 4L 8s | | 4L 4s, 4L 8s | ||
|} | |} | ||
For the 2L 5s scale, the genchain is this: | For the 2L 5s scale, the genchain is this: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
|B# | | B# | ||
|F# | | F# | ||
|C# | | C# | ||
|G# | | G# | ||
|D# | | D# | ||
|A# | | A# | ||
|E# | | E# | ||
|B | | B | ||
|F | | F | ||
|C | | C | ||
|G | | G | ||
|D | | D | ||
|A | | A | ||
|E | | E | ||
|Bb | | Bb | ||
|Fb | | Fb | ||
|Cb | | Cb | ||
|Gb | | Gb | ||
|Db | | Db | ||
|Ab | | Ab | ||
|Eb | | Eb | ||
|Bbb | | Bbb | ||
|Fbb | | Fbb | ||
|Cbb | | Cbb | ||
|Gbb | | Gbb | ||
|- | |- | ||
|A2 | | A2 | ||
|A6 | | A6 | ||
|A3 | | A3 | ||
|A7 | | A7 | ||
| | | A4 | ||
|A1 | | A1 | ||
| | | A5 | ||
|M2 | | M2 | ||
|M6 | | M6 | ||
|M3 | | M3 | ||
|M7 | | M7 | ||
| | | P4 | ||
|P1 | | P1 | ||
| | | P5 | ||
|m2 | | m2 | ||
|m6 | | m6 | ||
|m3 | | m3 | ||
|m7 | | m7 | ||
| | | d4 | ||
|d1 | | d1 | ||
| | | d5 | ||
|d2 | | d2 | ||
|d6 | | d6 | ||
|d3 | | d3 | ||
|d7 | | d7 | ||
|} | |} | ||
== Temperaments == | |||
The 2L 5s scale is generated by a very accurate [[4/3]], such that two of them wind up on a near exact [[16/9]], which period-reduces to [[16/15]] (the minor mossecond). This interval taken 2 times is approximated by an [[8/7]], and taken 4 times is approximated by a [[6/5]] (or [[2/1]] in the next mosoctave). These 2 equivalencies result in two tempered commas: the marvel comma - [[225/224]] ((<sup>16</sup>/<sub>15</sub>)<sup>2</sup>=(<sup>8</sup>/<sub>7</sub>)), and the diaschisma - [[2048/2025]] ((<sup>16</sup>/<sub>15</sub>)<sup>3</sup>=(<sup>6</sup>/<sub>5</sub>)). The diaschisma can also be tempered by taking 5 generators to mean a [[3/2]] ((<sup>4</sup>/<sub>3</sub>)<sup>5</sup>=(<sup>3</sup>/<sub>2</sub>)·(<sup>5</sup>/<sub>3</sub>)<sup>2</sup>). The tempered marvel comma also means that the two large [[Tritone|tritones]] ([[64/45|pental]] and [[10/7|septimal]]) are addressed by the same scale step. The tempered diaschisma, on the other hand, means that both pental tritones are also addressed by the same scale step. [[User:Ayceman|I]] propose the name '''tristone''' for this temperament, as 3 semitones make a period-reduced octave, and it alludes to the tritone tempering. | |||
[[Category:EdVI]] | [[Category:EdVI]] | ||
[[Category:Nonoctave]] | [[Category:Nonoctave]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |