3L 2s (3/2-equivalent): Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords. | Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords. | ||
[[Step ratio|Basic]] uranian is in [[8edf]], which is a very good fifth-based equal | [[Step ratio|Basic]] uranian is in [[8edf]], which is a very good fifth-based equal temperament similar to [[88cET]]. | ||
== Temperaments == | ==Temperaments== | ||
The most basic rank-2 temperament interpretation of uranian is semiwolf, which has 4:7:10 chords spelled <code>root-(p+1g)-(3p-2g)</code> (p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two [[7/6]] generators approximating a [[27/20]] wolf fourth. | The most basic rank-2 temperament interpretation of uranian is semiwolf, which has 4:7:10 chords spelled <code>root-(p+1g)-(3p-2g)</code> (p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two [[7/6]] generators approximating a [[27/20]] wolf fourth. | ||
=== Semiwolf === | ===Semiwolf=== | ||
[[Subgroup]]: 3/2.7/4.5/2 | [[Subgroup]]: 3/2.7/4.5/2 | ||
[[Comma]] list: [[245/243]] | [[Comma]] list: [[245/243]] | ||
[[POL2]] generator: ~7/6 = 262.1728 | |||
[[Mapping]]: [{{val|1 1 3}}, {{val|0 1 -2}}] | [[Mapping]]: [{{val|1 1 3}}, {{val|0 1 -2}}] | ||
[[Vals]]: {{val list|8edf, 11edf, 13edf}} | [[Vals]]: {{val list|8edf, 11edf, 13edf}} | ||
==== Semilupine ==== | ====Semilupine==== | ||
[[Subgroup]]: 3/2.7/4.5/2.11/4 | [[Subgroup]]: 3/2.7/4.5/2.11/4 | ||
[[Comma]] list: [[245/243]], [[100/99]] | [[Comma]] list: [[245/243]], [[100/99]] | ||
[[POL2]] generator: ~7/6 = 264.3771 | |||
[[Mapping]]: [{{val|1 1 3 4}}, {{val|0 1 -2 -4}}] | [[Mapping]]: [{{val|1 1 3 4}}, {{val|0 1 -2 -4}}] | ||
[[Vals]]: {{val list|8edf, 13edf}} | [[Vals]]: {{val list|8edf, 13edf}} | ||
====Hemilycan==== | |||
==== Hemilycan ==== | |||
[[Subgroup]]: 3/2.7/4.5/2.11/4 | [[Subgroup]]: 3/2.7/4.5/2.11/4 | ||
[[Comma]] list: [[245/243]], [[441/440]] | [[Comma]] list: [[245/243]], [[441/440]] | ||
[[POL2]] generator: ~7/6 = 261.5939 | |||
[[Mapping]]: [{{val|1 1 3 1}}, {{val|0 1 -2 4}}] | [[Mapping]]: [{{val|1 1 3 1}}, {{val|0 1 -2 4}}] | ||
[[Vals]]: {{val list|8edf, 11edf}} | [[Vals]]: {{val list|8edf, 11edf}} | ||
== Notation== | |||
Since 1-7/4-5/2 is fifth-equivalent to a tone cluster of 1-10/9-7/6, it is more convenient to notate uranian scales as repeating at multiple fifths. This way, 7/4 is its own pitch class, distinct from 7/6. Notating this way produces a major ninth which is the Aeolian mode of Annapolis[6L 4s]: | |||
{| class="wikitable" | |||
|+ | |||
!Note | |||
!18edf | |||
!13edf | |||
!21edf | |||
!8edf | |||
!19edf | |||
!11edf | |||
!14edf | |||
|- | |||
|1# | |||
|1\18 | |||
38.9975 | |||
|1\13 | |||
53.9965 | |||
|2\21 | |||
66.8529 | |||
| rowspan="2" |1\8 | |||
87.7444 | |||
|3\19 | |||
110.835 | |||
|2\11 | |||
127.6282 | |||
|3\14 | |||
150.4189 | |||
|- | |||
|2b | |||
|3\18 | |||
116.9925 | |||
|2\13 | |||
107.9931 | |||
|3\21 | |||
100.2793 | |||
|2\19 | |||
73.89 | |||
|1\11 | |||
63.814 | |||
|1\14 | |||
50.1396 | |||
|- | |||
|2 | |||
|4\18 | |||
155.99 | |||
|3\13 | |||
161.9896 | |||
|5\21 | |||
167.1321 | |||
|2\8 | |||
175.48875 | |||
|5\19 | |||
184.725 | |||
|3\11 | |||
191.4423 | |||
|4\14 | |||
200.5586 | |||
|- | |||
|2# | |||
|5\18 | |||
194.9875 | |||
|4\13 | |||
215.9862 | |||
|7\21 | |||
233.985 | |||
! rowspan="2" |'''3\8''' | |||
'''263.2331''' | |||
|8\19 | |||
295.56 | |||
|5\11 | |||
319.07045 | |||
|7\14 | |||
350.9775 | |||
|- | |||
!3b | |||
!7\18 | |||
272.9825 | |||
!5\13 | |||
269.9829 | |||
!8\21 | |||
267.4114 | |||
!7\19 | |||
258.615 | |||
!4\11 | |||
255.2564 | |||
!5\14 | |||
250.6982 | |||
|- | |||
|3 | |||
|8\18 | |||
311.98 | |||
|6\13 | |||
323.9792 | |||
|10\21 | |||
334.2643 | |||
|4\8 | |||
350.9775 | |||
|10\19 | |||
369.45 | |||
|6\11 | |||
382.88455 | |||
|8\14 | |||
401.1171 | |||
|- | |||
|3# | |||
|9\18 | |||
350.9775 | |||
| rowspan="2" |7\13 | |||
377.9758 | |||
|12\21 | |||
401.1171 | |||
|5\8 | |||
438.7219 | |||
|13\19 | |||
470.285 | |||
|8\11 | |||
510.5128 | |||
|11\14 | |||
551.536 | |||
|- | |||
|4b | |||
|10\18 | |||
389.975 | |||
|11\21 | |||
367.9607 | |||
|4\8 | |||
350.9775 | |||
|9\19 | |||
332.505 | |||
|5\11 | |||
319.07045 | |||
|6\14 | |||
300.8379 | |||
|- | |||
|4 | |||
|11\18 | |||
428.9725 | |||
|8\13 | |||
431.9723 | |||
|13\21 | |||
434.5436 | |||
|5\8 | |||
438.7219 | |||
|12\19 | |||
443.34 | |||
|7\11 | |||
446.6986 | |||
|9\14 | |||
451.2568 | |||
|- | |||
|4# | |||
|12\18 | |||
467.97 | |||
|9\13 | |||
485.9688 | |||
|15\21 | |||
501.3964 | |||
| rowspan="2" |6\8 | |||
526.46625 | |||
|15\19 | |||
554.175 | |||
|9\11 | |||
574.3268 | |||
|12\14 | |||
601.6757 | |||
|- | |||
|5b | |||
|13\18 | |||
506.9675 | |||
|10\13 | |||
539.9653 | |||
|16\21 | |||
534.8229 | |||
|14\19 | |||
516.23 | |||
|8\11 | |||
510.5128 | |||
|10\14 | |||
501.3964 | |||
|- | |||
|5 | |||
|15\18 | |||
584.9625 | |||
|11\13 | |||
593.9619 | |||
|18\21 | |||
601.6757 | |||
|7\8 | |||
614.2106 | |||
|17\19 | |||
628.065 | |||
|10\11 | |||
638.1409 | |||
|13\14 | |||
651.8154 | |||
|- | |||
|5# | |||
|16\18 | |||
622.96 | |||
| rowspan="2" |12\13 | |||
646.9585 | |||
|20\21 | |||
668.5286 | |||
|8\8 | |||
701.955 | |||
|20\19 | |||
738.9 | |||
|12\11 | |||
765.769 | |||
|16\14 | |||
802.2343 | |||
|- | |||
|6b | |||
|17\18 | |||
662.9575 | |||
|19\21 | |||
635.1021 | |||
|7\8 | |||
614.2106 | |||
|16\19 | |||
591.12 | |||
|9\11 | |||
574.3268 | |||
|11\14 | |||
551.636 | |||
|- | |||
!6 | |||
! colspan="7" |701.955 | |||
|- | |||
|6# | |||
|19\18 | |||
740.9525 | |||
|14\13 | |||
754.9515 | |||
|23\21 | |||
768.8021 | |||
| rowspan="2" |9\8 | |||
789.6994 | |||
|22\19 | |||
812.79 | |||
|13\11 | |||
829.5832 | |||
|17\14 | |||
852.3739 | |||
|- | |||
|7b | |||
|21\18 | |||
818.9475 | |||
|15\13 | |||
809.9481 | |||
|24\21 | |||
802.2343 | |||
|21\19 | |||
775.845 | |||
|12\11 | |||
765.769 | |||
|15\14 | |||
752.0946 | |||
|- | |||
|7 | |||
|22\18 | |||
857.945 | |||
|16\13 | |||
862.9446 | |||
|26\21 | |||
868.0871 | |||
|10\8 | |||
877.44375 | |||
|24\19 | |||
886.68 | |||
|14\11 | |||
893.3973 | |||
|18\14 | |||
902.5136 | |||
|- | |||
|7# | |||
|23\18 | |||
896.9425 | |||
|17\13 | |||
917.9412 | |||
|28\21 | |||
935.94 | |||
! rowspan="2" |11\8 | |||
965.1881 | |||
|27\19 | |||
997.515 | |||
|16\11 | |||
1021.02545 | |||
|21\14 | |||
1052.9235 | |||
|- | |||
!8b | |||
!25\18 | |||
974.9375 | |||
!18\13 | |||
971.9379 | |||
!29\21 | |||
969.3664 | |||
!26\19 | |||
960.57 | |||
!15\11 | |||
957.2114 | |||
!19\14 | |||
952.6532 | |||
|- | |||
|8 | |||
|26\18 | |||
1012.935 | |||
|19\13 | |||
1025.9342 | |||
|31\21 | |||
1036.2193 | |||
|12\8 | |||
1052.9235 | |||
|29\19 | |||
1071.405 | |||
|17\11 | |||
1084.83955 | |||
|22\14 | |||
1103.0721 | |||
|- | |||
|8# | |||
|27\18 | |||
1052.9325 | |||
| rowspan="2" |20\13 | |||
1079.9308 | |||
|33\21 | |||
1103.0721 | |||
|13\8 | |||
1140.7769 | |||
|32\19 | |||
1172.24 | |||
|19\11 | |||
1212.5678 | |||
|25\14 | |||
1253.4911 | |||
|- | |||
|9b | |||
|28\18 | |||
1091.93 | |||
|32\21 | |||
1069.9157 | |||
|12\8 | |||
1052.9235 | |||
|28\19 | |||
1034.46 | |||
|16\11 | |||
1021.02545 | |||
|20\14 | |||
1002.7929 | |||
|- | |||
|9 | |||
|29\18 | |||
1130.9275 | |||
|21\13 | |||
1133.9273 | |||
|34\21 | |||
1136.4986 | |||
|13\8 | |||
1140.7769 | |||
|31\19 | |||
1145.295 | |||
|18\11 | |||
1148.6536 | |||
|23\14 | |||
1153.2118 | |||
|- | |||
|9# | |||
|30\18 | |||
1169.925 | |||
|22\13 | |||
1187.9238 | |||
|36\21 | |||
1203.3514 | |||
| rowspan="2" |14\8 | |||
1228.42125 | |||
|34\19 | |||
1256.13 | |||
|20\11 | |||
1276.2818 | |||
|26\14 | |||
1303.6307 | |||
|- | |||
|0b | |||
|31\18 | |||
1208.9225 | |||
|23\13 | |||
1241.9203 | |||
|37\21 | |||
1236.7779 | |||
|33\19 | |||
1218.285 | |||
|19\11 | |||
1212.5678 | |||
|24\14 | |||
1203.3514 | |||
|- | |||
|0 | |||
|33\18 | |||
1286.9175 | |||
|24\13 | |||
1295.9169 | |||
|39\21 | |||
1303.6307 | |||
|15\8 | |||
1316.1656 | |||
|36\19 | |||
1330.02 | |||
|21\11 | |||
1340.0959 | |||
|27\14 | |||
1353.8704 | |||
|- | |||
|0# | |||
|34\18 | |||
1323.915 | |||
| rowspan="2" |25\13 | |||
1348.9135 | |||
|41\21 | |||
1370.4836 | |||
|16\8 | |||
1403.91 | |||
|39\19 | |||
1440.855 | |||
|23\11 | |||
1468.724 | |||
|30\14 | |||
1504.1892 | |||
|- | |||
|1b’ | |||
|35\18 | |||
1364.9125 | |||
|40\21 | |||
1337.0571 | |||
|15\8 | |||
1316.1656 | |||
|35\19 | |||
1293.075 | |||
|20\11 | |||
1276.2818 | |||
|25\14 | |||
1253.591 | |||
|- | |||
!1’ | |||
! colspan="7" |1403.91 | |||
|} | |||
[[Category:Scales]] | [[Category:Scales]] | ||
[[Category:Abstract MOS patterns]] | [[Category:Abstract MOS patterns]] | ||
[[Category:Nonoctave]] | [[Category:Nonoctave]] |