Würschmidt family: Difference between revisions
m adjusted sorting on category page |
No edit summary |
||
Line 2: | Line 2: | ||
= Würschmidt = | = Würschmidt = | ||
('''Würschmidt''' is sometimes spelled '''Wuerschmidt''') | |||
[[Comma]]: 393216/390625 | |||
[[Mapping]]: [<1 7 3|, <0 -8 -1|] | |||
[[POTE generator]]: ~5/4 = 387.799 | [[POTE generator]]: ~5/4 = 387.799 | ||
[[EDO|Vals]]: {{Val list| 31, 34, 65, 99, 164, 721c, 885c }} | |||
[[Badness]]: 0.040603 | |||
== Music == | == Music == | ||
* [http://chrisvaisvil.com/ancient-stardust-wurschmidt13/ Ancient Stardust], [http://micro.soonlabel.com/jake_freivald/tunings_by_jake_freivald/20130811_wurschmidt%5b13%5d.mp3 play] by Chris Vaisvil; Würschmidt[13] in 5-limit minimax tuning | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Wurschmidt%5b16%5d-out.mp3 Extrospection] by [https://soundcloud.com/jdfreivald/extrospection Jake Freivald]; Würschmidt[16] tuned in 31et. | |||
[http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Wurschmidt%5b16%5d-out.mp3 Extrospection] by [https://soundcloud.com/jdfreivald/extrospection Jake Freivald]; Würschmidt[16] tuned in 31et. | |||
== Seven limit children == | == Seven limit children == | ||
The second comma of the [[Normal_lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>. | The second comma of the [[Normal_lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>. | ||
= | = Septimal Würschmidt = | ||
Würschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Würschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175. | |||
[[Comma list]]: [[225/224]], 8748/8575 | |||
[[Mapping]]: [<1 7 3 15|, <0 -8 -1 -18|] | |||
[[POTE generator]]: ~5/4 = 387.383 | [[POTE generator]]: ~5/4 = 387.383 | ||
[[EDO|Vals]]: {{Val list| 31, 96, 127, 285bd, 412bbdd }} | |||
[[Badness]]: 0.050776 | |||
Badness: 0. | |||
== 11-limit == | == 11-limit == | ||
Comma list: 99/98, 176/175, 243/242 | |||
Mapping: [<1 7 3 15 17|, <0 -8 -1 -18 -20|] | |||
POTE generator: ~5/4 = 387.447 | POTE generator: ~5/4 = 387.447 | ||
Vals: {{Val list| 31, 65d, 96, 127, 223d }} | |||
Badness: 0.024413 | |||
== 13-limit == | |||
Comma list: 99/98, 144/143, 176/175, 275/273 | |||
Mapping: [<1 7 3 15 17 1|, <0 -8 -1 -18 -20 4|] | |||
POTE generator: ~5/4 = 387.626 | POTE generator: ~5/4 = 387.626 | ||
Vals: {{Val list| 31, 65d, 161df }} | |||
Badness: 0.023593 | |||
== Worseschmidt == | |||
Commas: 66/65, 99/98, 105/104, 243/242 | |||
Map: [<1 7 3 15 17 22|, <0 -8 -1 -18 -20 -27|] | |||
POTE generator: ~5/4 = 387.099 | POTE generator: ~5/4 = 387.099 | ||
Vals: {{EDOs| 3def, 28def, 31 }} | |||
Badness: 0. | Badness: 0.034382 | ||
= Worschmidt = | = Worschmidt = | ||
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with würschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore. | |||
[[Comma list]]: 126/125, 33075/32768 | |||
[[Mapping]]: [<1 7 3 -6|, <0 -8 -1 13|] | |||
[[POTE generator]]: ~5/4 = 387.392 | [[POTE generator]]: ~5/4 = 387.392 | ||
[[EDO|Vals]]: {{Val list| 31, 65, 96d, 127d }} | |||
[[Badness]]: 0.064614 | |||
Badness: 0. | |||
== 11-limit == | == 11-limit == | ||
Comma list: 126/125, 243/242, 385/384 | |||
Mapping: [<1 7 3 -6 17|, <0 -8 -1 13 -20|] | |||
POTE generator: ~5/4 = 387.407 | POTE generator: ~5/4 = 387.407 | ||
Vals: {{Val list| 31, 65, 96d, 127d }} | |||
Badness: 0.033436 | |||
Badness: 0. | |||
= Whirrschmidt = | = Whirrschmidt = | ||
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie. | |||
[[ | [[Comma list]]: 4375/4374, 393216/390625 | ||
[[Mapping]]: [<1 7 3 38|, <0 -8 -1 -52|] | |||
[[POTE generator]]: ~5/4 = 387.881 | [[POTE generator]]: ~5/4 = 387.881 | ||
[[EDO|Vals]]: {{Val list| 31dd, 34d, 65, 99 }} | |||
[[Badness]]: 0.086334 | |||
= Hemiwürschmidt = | = Hemiwürschmidt = | ||
'''Hemiwürschmidt''' (sometimes spelled '''Hemiwuerschmidt'''), which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out [[3136/3125]], 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28... | '''Hemiwürschmidt''' (sometimes spelled '''Hemiwuerschmidt'''), which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out [[3136/3125]], 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28... | ||
[[Comma list]]: 2401/2400, 3136/3125 | |||
[[ | [[Mapping]]: [<1 15 4 7|, <0 -16 -2 -5|] | ||
[[Wedgie]]: <<16 2 5 -34 -37 6|| | |||
[[POTE generator]]: ~28/25 = 193.898 | |||
[[EDO|Vals]]: {{Val list| 31, 68, 99, 229, 328, 557c, 885cc }} | |||
Badness: 0.0203 | [[Badness]]: 0.0203 | ||
== 11-limit == | == 11-limit == | ||
Comma list: 243/242, 441/440, 3136/3125 | |||
Mapping: [<1 15 4 7 37|, <0 -16 -2 -5 -40|] | |||
POTE generator: ~28/25 = 193.840 | |||
Vals: {{Val list| 31, 99e, 130, 650ce, 811ce }} | |||
Badness: 0.021069 | |||
Badness: 0. | |||
=== 13-limit === | === 13-limit === | ||
Comma list: 243/242, 351/350, 441/440, 3584/3575 | |||
Mapping: [<1 15 4 7 37 -29|, <0 -16 -2 -5 -40 39|] | |||
POTE generator: ~28/25 = 193. | POTE generator: ~28/25 = 193.829 | ||
Vals: {{Val list| 31, 99e, 130, 291, 421e, 551ce }} | |||
Badness: 0.023074 | |||
Badness: 0. | |||
=== Hemithir === | === Hemithir === | ||
Comma list: 121/120, 176/175, 196/195, 275/273 | |||
Mapping: [<1 15 4 7 37 -3|, <0 -16 -2 -5 -40 8|] | |||
POTE generator: ~28/25 = 193.918 | POTE generator: ~28/25 = 193.918 | ||
Vals: {{Val list| 31, 68e, 99ef }} | |||
Badness: 0.031199 | |||
Badness: 0. | |||
== Hemiwur == | == Hemiwur == | ||
Comma list: 121/120, 176/175, 1375/1372 | |||
Mapping: [<1 15 4 7 11|, <0 -16 -2 -5 -9|] | |||
POTE generator: ~28/25 = 193.884 | POTE generator: ~28/25 = 193.884 | ||
Vals: {{Val list| 31, 68, 99, 130e, 229e }} | |||
Badness: 0. | Badness: 0.029270 | ||
=== 13-limit === | === 13-limit === | ||
Comma list: 121/120, 176/175, 196/195, 275/273 | |||
Mapping: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|] | |||
POTE generator: ~28/25 = 194.004 | POTE generator: ~28/25 = 194.004 | ||
Vals: {{Val list| 31, 68, 99f, 167ef }} | |||
Badness: 0. | Badness: 0.028432 | ||
=== Hemiwar === | === Hemiwar === | ||
Comma list: 66/65, 105/104, 121/120, 1375/1372 | |||
Mapping: [<1 15 4 7 11 23|, <0 -16 -2 -5 -9 -23|] | |||
POTE generator: ~28/25 = 193.698 | POTE generator: ~28/25 = 193.698 | ||
Vals: {{Val list| 6f, 31 }} | |||
Badness: 0.044886 | |||
Badness: 0. | |||
= Relationships to other temperaments = | = Relationships to other temperaments = | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span> | ||