25edo: Difference between revisions

Inthar (talk | contribs)
Xenwolf (talk | contribs)
cleanup
Line 1: Line 1:
__FORCETOC__
=Theory=


25EDO divides the [[Octave|octave]] in 25 equal steps of exact size 48 [[cent|cent]]s each. It is a good way to tune the [[Blackwood_temperament|Blackwood temperament]], which takes the very sharp fifths of [[5edo|5EDO]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 ([[5/4|5/4]]) and 7 ([[7/4|7/4]]). It also tunes [[sixix]] temperament with a sharp fifth. It supplies the optimal patent val for the 11-limit 6&25 temperament tempering out 49/48, 77/75 and 605/576, and the 13-limit extension also tempering out 66/65.
== Theory ==


25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. Moreover, in full 7-limit including the 3, it is not [[consistent|consistent]]. It therefore makes sense to use it as a 2.5.7 [[Just_intonation_subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five [[8/7|8/7]]s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a [[128/125|128/125]] [[diesis|diesis]] and two [[septimal_tritones|septimal tritones]] of [[7/5|7/5]] with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50edo|50EDO]]. An alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for [[Mavila|mavila]] temperament.
25EDO divides the [[octave]] in 25 equal steps of exact size 48 [[cent]]s each. It is a good way to tune the [[blackwood temperament]], which takes the very sharp fifths of [[5edo]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 ([[5/4]]) and 7 ([[7/4]]). It also tunes [[sixix]] temperament with a sharp fifth. It supplies the optimal patent val for the 11-limit 6&25 temperament tempering out 49/48, 77/75 and 605/576, and the 13-limit extension also tempering out 66/65.
 
25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. Moreover, in full 7-limit including the 3, it is not [[consistent]]. It therefore makes sense to use it as a 2.5.7 [[Just intonation subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five [[8/7]]s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a [[128/125]] [[diesis]] and two [[septimal tritones]] of [[7/5]] with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50edo]]. An alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for [[mavila]] temperament.


If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the [[k*N_subgroups|2*25 subgroup]] 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for a wide range of harmony.
If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the [[k*N_subgroups|2*25 subgroup]] 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for a wide range of harmony.


=Intervals=
== Intervals ==
{| class="wikitable"
 
{| class="wikitable center-all"
|-
|-
| style="text-align:center;" | Degrees
| Degrees
| style="text-align:center;" | Cents
| Cents
| style="text-align:center;" | Approximate
| Approximate <br> Ratios*
 
| Armodue <br> Notation
Ratios*
| colspan="3" | [[Ups and Downs notation]]
| style="text-align:center;" | Armodue
 
Notation
| colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs notation]]
|-
|-
| style="text-align:center;" | 0
| 0
| style="text-align:center;" | 0
| 0
| style="text-align:center;" | 1/1
| 1/1
| style="text-align:center;" | 1
| 1
| style="text-align:center;" | P1
| P1
| style="text-align:center;" | perfect 1sn
| perfect 1sn
| style="text-align:center;" | D, Eb
| D, Eb
|-
|-
| style="text-align:center;" | 1
| 1
| style="text-align:center;" | 48
| 48
| style="text-align:center;" | 33/32, 39/38, 34/33
| 33/32, 39/38, 34/33
| style="text-align:center;" | 1#
| 1#
| style="text-align:center;" | ^1, ^m2
| ^1, ^m2
| style="text-align:center;" | up 1sn, upminor 2nd
| up 1sn, upminor 2nd
| style="text-align:center;" | ^D, ^Eb
| ^D, ^Eb
|-
|-
| style="text-align:center;" | 2
| 2
| style="text-align:center;" | 96
| 96
| style="text-align:center;" | 17/16, 20/19, 18/17
| 17/16, 20/19, 18/17
| style="text-align:center;" | 2b
| 2b
| style="text-align:center;" | v~2
| v~2
| style="text-align:center;" | downmid 2nd
| downmid 2nd
| style="text-align:center;" | ^^Eb
| ^^Eb
|-
|-
| style="text-align:center;" | 3
| 3
| style="text-align:center;" | 144
| 144
| style="text-align:center;" | 12/11, 38/35
| 12/11, 38/35
| style="text-align:center;" | 2
| 2
| style="text-align:center;" | ^~2
| ^~2
| style="text-align:center;" | upmid 2nd
| upmid 2nd
| style="text-align:center;" | vvE
| vvE
|-
|-
| style="text-align:center;" | 4
| 4
| style="text-align:center;" | 192
| 192
| style="text-align:center;" | 9/8, 10/9, 19/17
| 9/8, 10/9, 19/17
| style="text-align:center;" | 2#
| 2#
| style="text-align:center;" | vM2
| vM2
| style="text-align:center;" | downmajor 2nd
| downmajor 2nd
| style="text-align:center;" | vE
| vE
|-
|-
| style="text-align:center;" | 5·
| 5·
| style="text-align:center;" | 240
| 240
| style="text-align:center;" | 8/7
| 8/7
| style="text-align:center;" | 3b
| 3b
| style="text-align:center;" | M2, m3
| M2, m3
| style="text-align:center;" | major 2nd, minor 3rd
| major 2nd, minor 3rd
| style="text-align:center;" | E, F
| E, F
|-
|-
| style="text-align:center;" | 6
| 6
| style="text-align:center;" | 288
| 288
| style="text-align:center;" | 19/16, 20/17
| 19/16, 20/17
| style="text-align:center;" | 3
| 3
| style="text-align:center;" | ^m3
| ^m3
| style="text-align:center;" | upminor 3rd
| upminor 3rd
| style="text-align:center;" | ^F
| ^F
|-
|-
| style="text-align:center;" | 7
| 7
| style="text-align:center;" | 336
| 336
| style="text-align:center;" | 39/32, 17/14, 40/33
| 39/32, 17/14, 40/33
| style="text-align:center;" | 3#
| 3#
| style="text-align:center;" | v~3
| v~3
| style="text-align:center;" | downmid 3rd
| downmid 3rd
| style="text-align:center;" | ^^F
| ^^F
|-
|-
| style="text-align:center;" | 8·
| 8·
| style="text-align:center;" | 384
| 384
| style="text-align:center;" | 5/4
| 5/4
| style="text-align:center;" | 4b
| 4b
| style="text-align:center;" | ^~3
| ^~3
| style="text-align:center;" | upmid 3rd
| upmid 3rd
| style="text-align:center;" | vvF#
| vvF#
|-
|-
| style="text-align:center;" | 9
| 9
| style="text-align:center;" | 432
| 432
| style="text-align:center;" | 9/7, 32/25, 50/39
| 9/7, 32/25, 50/39
| style="text-align:center;" | 4
| 4
| style="text-align:center;" | vM3
| vM3
| style="text-align:center;" | downmajor
| downmajor
| style="text-align:center;" | vF#
| vF#
|-
|-
| style="text-align:center;" | 10
| 10
| style="text-align:center;" | 480
| 480
| style="text-align:center;" | 33/25, 25/19
| 33/25, 25/19
| style="text-align:center;" | 4#/5b
| 4#/5b
| style="text-align:center;" | M3, P4
| M3, P4
| style="text-align:center;" | major 3rd, perfect 4th
| major 3rd, perfect 4th
| style="text-align:center;" | F#, G
| F#, G
|-
|-
| style="text-align:center;" | 11·
| 11·
| style="text-align:center;" | 528
| 528
| style="text-align:center;" | 31/21, 34/25
| 31/21, 34/25
| style="text-align:center;" | 5
| 5
| style="text-align:center;" | ^4
| ^4
| style="text-align:center;" | up 4th
| up 4th
| style="text-align:center;" | ^G
| ^G
|-
|-
| style="text-align:center;" | 12
| 12
| style="text-align:center;" | 576
| 576
| style="text-align:center;" | 7/5, 39/28
| 7/5, 39/28
| style="text-align:center;" | 5#
| 5#
| style="text-align:center;" | v~4,v~5
| v~4,v~5
| style="text-align:center;" | downmid 4th,
| downmid 4th, <br> downmid 5th
 
| ^^G, ^^Ab
downmid 5th
| style="text-align:center;" | ^^G, ^^Ab
|-
|-
| style="text-align:center;" | 13
| 13
| style="text-align:center;" | 624
| 624
| style="text-align:center;" | 10/7, 56/39
| 10/7, 56/39
| style="text-align:center;" | 6b
| 6b
| style="text-align:center;" | ^~4,^~5
| ^~4,^~5
| style="text-align:center;" | upmid 4th,
| upmid 4th, <br> upmid 5th
 
| vvG#, vvA
upmid 5th
| style="text-align:center;" | vvG#, vvA
|-
|-
| style="text-align:center;" | 14·
| 14·
| style="text-align:center;" | 672
| 672
| style="text-align:center;" | 42/31, 25/17
| 42/31, 25/17
| style="text-align:center;" | 6
| 6
| style="text-align:center;" | v5
| v5
| style="text-align:center;" | down 5th
| down 5th
| style="text-align:center;" | vA
| vA
|-
|-
| style="text-align:center;" | 15
| 15
| style="text-align:center;" | 720
| 720
| style="text-align:center;" | 50/33, 38/25
| 50/33, 38/25
| style="text-align:center;" | 6#
| 6#
| style="text-align:center;" | P5, m6
| P5, m6
| style="text-align:center;" | perfect 5th, minor 6th
| perfect 5th, minor 6th
| style="text-align:center;" | A, Bb
| A, Bb
|-
|-
| style="text-align:center;" | 16
| 16
| style="text-align:center;" | 768
| 768
| style="text-align:center;" | 14/9, 25/16, 39/25
| 14/9, 25/16, 39/25
| style="text-align:center;" | 7b
| 7b
| style="text-align:center;" | ^m6
| ^m6
| style="text-align:center;" | upminor 6th
| upminor 6th
| style="text-align:center;" | ^Bb
| ^Bb
|-
|-
| style="text-align:center;" | 17·
| 17·
| style="text-align:center;" | 816
| 816
| style="text-align:center;" | 8/5
| 8/5
| style="text-align:center;" | 7
| 7
| style="text-align:center;" | v~6
| v~6
| style="text-align:center;" | downmid 6th
| downmid 6th
| style="text-align:center;" | ^^Bb
| ^^Bb
|-
|-
| style="text-align:center;" | 18
| 18
| style="text-align:center;" | 864
| 864
| style="text-align:center;" | 64/39, 28/17, 33/20
| 64/39, 28/17, 33/20
| style="text-align:center;" | 7#
| 7#
| style="text-align:center;" | ^~6
| ^~6
| style="text-align:center;" | upmid 6th
| upmid 6th
| style="text-align:center;" | vvB
| vvB
|-
|-
| style="text-align:center;" | 19
| 19
| style="text-align:center;" | 912
| 912
| style="text-align:center;" | 32/19, 17/10
| 32/19, 17/10
| style="text-align:center;" | 8b
| 8b
| style="text-align:center;" | vM6
| vM6
| style="text-align:center;" | downmajor 6th
| downmajor 6th
| style="text-align:center;" | vB
| vB
|-
|-
| style="text-align:center;" | 20·
| 20·
| style="text-align:center;" | 960
| 960
| style="text-align:center;" | 7/4
| 7/4
| style="text-align:center;" | 8
| 8
| style="text-align:center;" | M6, m7
| M6, m7
| style="text-align:center;" | major 6th, minor 7th
| major 6th, minor 7th
| style="text-align:center;" | B, C
| B, C
|-
|-
| style="text-align:center;" | 21
| 21
| style="text-align:center;" | 1008
| 1008
| style="text-align:center;" | 16/9, 9/5, 34/19
| 16/9, 9/5, 34/19
| style="text-align:center;" | 8#
| 8#
| style="text-align:center;" | ^m7
| ^m7
| style="text-align:center;" | upminor 7th
| upminor 7th
| style="text-align:center;" | ^C
| ^C
|-
|-
| style="text-align:center;" | 22
| 22
| style="text-align:center;" | 1056
| 1056
| style="text-align:center;" | 11/6, 35/19
| 11/6, 35/19
| style="text-align:center;" | 9b
| 9b
| style="text-align:center;" | v~7
| v~7
| style="text-align:center;" | downmid 7th
| downmid 7th
| style="text-align:center;" | ^^C
| ^^C
|-
|-
| style="text-align:center;" | 23
| 23
| style="text-align:center;" | 1104
| 1104
| style="text-align:center;" | 32/17, 17/9, 19/10
| 32/17, 17/9, 19/10
| style="text-align:center;" | 9
| 9
| style="text-align:center;" | ^~7
| ^~7
| style="text-align:center;" | upmid 7th
| upmid 7th
| style="text-align:center;" | vvC#
| vvC#
|-
|-
| style="text-align:center;" | 24
| 24
| style="text-align:center;" | 1152
| 1152
| style="text-align:center;" | 33/17, 64/33, 76/39
| 33/17, 64/33, 76/39
| style="text-align:center;" | 9#/1b
| 9#/1b
| style="text-align:center;" | vM7
| vM7
| style="text-align:center;" | downmajor 7th
| downmajor 7th
| style="text-align:center;" | vC#
| vC#
|-
|-
| style="text-align:center;" | 25
| 25
| style="text-align:center;" | 1200
| 1200
| style="text-align:center;" | 2/1
| 2/1
| style="text-align:center;" | 1
| 1
| style="text-align:center;" | P8
| P8
| style="text-align:center;" | perfect 8ve
| perfect 8ve
| style="text-align:center;" | C#, D
| C#, D
|}
|}
*based on treating 25-EDO as a 2.9.5.7.33.39.17.19 subgroup; other approaches are possible.
*based on treating 25-EDO as a 2.9.5.7.33.39.17.19 subgroup; other approaches are possible.
Line 240: Line 233:
[[:File:25ed2-001.svg|25ed2-001.svg]]
[[:File:25ed2-001.svg|25ed2-001.svg]]


=Relationship to Armodue=
== Relationship to Armodue ==


Like [[16edo|16-EDO]] and [[23edo|23-EDO]], 25-EDO contains the 9-note "Superdiatonic" scale of [[7L_2s|7L2s]] (LLLsLLLLs) that is generated by a circle of heavily-flattened 3/2s (ranging in size from 5\9-EDO or 666.67 cents, to 4\7-EDO or 685.71 cents). The 25-EDO generator for this scale is the 672-cent interval. This allows 25-EDO to be used with the [[Armodue_theory|Armodue]] notation system in much the same way that [[19edo|19-EDO]] is used with the standard diatonic notation; see the above interval chart for the Armodue names. Because the 25-EDO Armodue 6th is flatter than that of 16-EDO (the middle of the Armodue spectrum), sharps are lower in pitch than enharmonic flats.
Like [[16edo|16-EDO]] and [[23edo|23-EDO]], 25-EDO contains the 9-note "Superdiatonic" scale of [[7L_2s|7L2s]] (LLLsLLLLs) that is generated by a circle of heavily-flattened 3/2s (ranging in size from 5\9-EDO or 666.67 cents, to 4\7-EDO or 685.71 cents). The 25-EDO generator for this scale is the 672-cent interval. This allows 25-EDO to be used with the [[Armodue_theory|Armodue]] notation system in much the same way that [[19edo|19-EDO]] is used with the standard diatonic notation; see the above interval chart for the Armodue names. Because the 25-EDO Armodue 6th is flatter than that of 16-EDO (the middle of the Armodue spectrum), sharps are lower in pitch than enharmonic flats.


=Commas=
== Commas ==
 
25 EDO tempers out the following [[commas]]. (Note: This assumes the val &lt; 25 40 58 70 86 93 |.)
25 EDO tempers out the following [[commas]]. (Note: This assumes the val &lt; 25 40 58 70 86 93 |.)


{| class="wikitable"
{| class="wikitable center-all left-2 right-3"
|-
|-
! | [[Ratio]]
! [[Ratio]]
! | [[Monzo]]
! [[Monzo]]
! | [[Cents]]
! [[Cents]]
![[Color notation/Temperament Names|Color Name]]
! [[Color name]]
! | Name 1
! Name 1
! | Name 2
! Name 2
! | Name 3
! Name 3
|-
|-
| style="text-align:center;" | 256/243
| 256/243
| |<nowiki> | 8 -5 </nowiki>&gt;
| {{Monzo| 8 -5 }}
| style="text-align:right;" | 90.22
| 90.22
| style="text-align:center;" |Sawa
| Sawa
| style="text-align:center;" | Limma
| Limma
| style="text-align:center;" | Pythagorean Minor 2nd
| Pythagorean Minor 2nd
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 3125/3072
| 3125/3072
| |<nowiki> | -10 -1 5 </nowiki>&gt;
| {{Monzo| -10 -1 5 }}
| style="text-align:right;" | 29.61
| 29.61
| style="text-align:center;" |Laquinyo
| Laquinyo
| style="text-align:center;" | Small Diesis
| Small Diesis
| style="text-align:center;" | Magic Comma
| Magic Comma
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" |  
|  
| |<nowiki> | 38 -2 -15 </nowiki>&gt;
| {{Monzo| 38 -2 -15 }}
| style="text-align:right;" | 1.38
| 1.38
| style="text-align:center;" |Sasa-quintrigu
| Sasa-quintrigu
| style="text-align:center;" | Hemithirds Comma
| Hemithirds Comma
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 16807/16384
| 16807/16384
| |<nowiki> | -14 0 0 5 </nowiki>&gt;
| {{Monzo| -14 0 0 5 }}
| style="text-align:right;" | 44.13
| 44.13
| style="text-align:center;" |Laquinzo
| Laquinzo
| |  
|  
| |  
|  
| |  
|  
|-
|-
| style="text-align:center;" | 49/48
| 49/48
| |<nowiki> | -4 -1 0 2 </nowiki>&gt;
| {{Monzo| -4 -1 0 2 }}
| style="text-align:right;" | 35.70
| 35.70
| style="text-align:center;" |Zozo
| Zozo
| style="text-align:center;" | Slendro Diesis
| Slendro Diesis
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 64/63
| 64/63
| |<nowiki> | 6 -2 0 -1 </nowiki>&gt;
| {{Monzo| 6 -2 0 -1 }}
| style="text-align:right;" | 27.26
| 27.26
| style="text-align:center;" |Ru
| Ru
| style="text-align:center;" | Septimal Comma
| Septimal Comma
| style="text-align:center;" | Archytas' Comma
| Archytas' Comma
| style="text-align:center;" | Leipziger Komma
| Leipziger Komma
|-
|-
| style="text-align:center;" | 3125/3087
| 3125/3087
| |<nowiki> | 0 -2 5 -3 </nowiki>&gt;
| {{Monzo| 0 -2 5 -3 }}
| style="text-align:right;" | 21.18
| 21.18
| style="text-align:center;" |Triru-aquinyo
| Triru-aquinyo
| style="text-align:center;" | Gariboh
| Gariboh
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 50421/50000
| 50421/50000
| |<nowiki> | -4 1 -5 5 </nowiki>&gt;
| {{Monzo| -4 1 -5 5 }}
| style="text-align:right;" | 14.52
| 14.52
| style="text-align:center;" |Quinzogu
| Quinzogu
| style="text-align:center;" | Trimyna
| Trimyna
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 1029/1024
| 1029/1024
| |<nowiki> | -10 1 0 3 </nowiki>&gt;
| {{Monzo| -10 1 0 3 }}
| style="text-align:right;" | 8.43
| 8.43
| style="text-align:center;" |Latrizo
| Latrizo
| style="text-align:center;" | Gamelisma
| Gamelisma
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 3136/3125
| 3136/3125
| |<nowiki> | 6 0 -5 2 </nowiki>&gt;
| {{Monzo| 6 0 -5 2 }}
| style="text-align:right;" | 6.08
| 6.08
| style="text-align:center;" |Zozoquingu
| Zozoquingu
| style="text-align:center;" | Hemimean
| Hemimean
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 65625/65536
| 65625/65536
| |<nowiki> | -16 1 5 1 </nowiki>&gt;
| {{Monzo| -16 1 5 1 }}
| style="text-align:right;" | 2.35
| 2.35
| style="text-align:center;" |Lazoquinyo
| Lazoquinyo
| style="text-align:center;" | Horwell
| Horwell
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 100/99
| 100/99
| |<nowiki> | 2 -2 2 0 -1 </nowiki>&gt;
| {{Monzo| 2 -2 2 0 -1 }}
| style="text-align:right;" | 17.40
| 17.40
| style="text-align:center;" |Luyoyo
| Luyoyo
| style="text-align:center;" | Ptolemisma
| Ptolemisma
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 176/175
| 176/175
| |<nowiki> | 4 0 -2 -1 1 </nowiki>&gt;
| {{Monzo| 4 0 -2 -1 1 }}
| style="text-align:right;" | 9.86
| 9.86
| style="text-align:center;" |Lorugugu
| Lorugugu
| style="text-align:center;" | Valinorsma
| Valinorsma
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 91/90
| 91/90
| |<nowiki> | -1 -2 -1 1 0 1 </nowiki>&gt;
| {{Monzo| -1 -2 -1 1 0 1 }}
| style="text-align:right;" | 19.13
| 19.13
| style="text-align:center;" |Thozogu
| Thozogu
| style="text-align:center;" | Superleap
| Superleap
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|-
|-
| style="text-align:center;" | 676/675
| 676/675
| |<nowiki> | 2 -3 -2 0 0 2 </nowiki>&gt;
| {{Monzo| 2 -3 -2 0 0 2 }}
| style="text-align:right;" | 2.56
| 2.56
| style="text-align:center;" |Bithogu
| Bithogu
| style="text-align:center;" | Parizeksma
| Parizeksma
| style="text-align:center;" |  
|  
| style="text-align:center;" |  
|  
|}
|}


=A 25edo keyboard=
== A 25edo keyboard ==


[[File:mm25.PNG|alt=mm25.PNG|mm25.PNG]]
[[File:mm25.PNG|alt=mm25.PNG|mm25.PNG]]
=Music=
''[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3 Study in Fives]'' by [http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29 Paul Rapoport]
[http://chrisvaisvil.com/?p=2377 Fantasy for Piano in 25 Note per Octave Tuning] ''[http://micro.soonlabel.com/25edo/fantasy_for_piano_in_25_edo.mp3 play]'' by Chris Vaisvil


''[http://micro.soonlabel.com/gene_ward_smith/Others/Fiale/flat%20fourth%20blues.mp3 Flat fourth blues]'' by Fabrizio Fulvio Fausto Fiale
== Music ==


[[File:25edochorale.mid]] [[:File:25edochorale.mid|25edochorale.mid]] Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded "The <span style="">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.")
* [http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3 Study in Fives] by [http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29 Paul Rapoport]
* [http://chrisvaisvil.com/?p=2377 Fantasy for Piano in 25 Note per Octave Tuning] ''[http://micro.soonlabel.com/25edo/fantasy_for_piano_in_25_edo.mp3 play]'' by [[Chris Vaisvil]]
* [http://micro.soonlabel.com/gene_ward_smith/Others/Fiale/flat%20fourth%20blues.mp3 Flat fourth blues] by [[Fabrizio Fulvio Fausto Fiale]]
* [[:File:25edochorale.mid]] by [[Peter Kosmorsky]] (10/14/10, 2.5.7 subgroup, a friend responded "The 25edo canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.")
* [[:File:25_edo_prelude_largo.mid]] by Peter Kosmorsky (2011, Blackwood)


[[File:25_edo_prelude_largo.mid]] [[:File:25_edo_prelude_largo.mid|25 edo prelude largo.mid]] Peter Kosmorsky (2011, Blackwood)
[[Category:25edo]]
[[Category:25edo]]
[[Category:edo]]
[[Category:Edo]]
[[Category:keyboard]]
[[Category:Keyboard]]
[[Category:listen]]
[[Category:Listen]]
[[Category:subgroup]]
[[Category:Subgroup]]
[[Category:todo:unify_precision]]
[[Category:Twentuning]]
[[Category:twentuning]]