34edo: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
Line 507: Line 507:


=34edo and phi=
=34edo and phi=
As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[MOSScales|Moment of Symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and | -6 2 6 0 0 -13 >. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo|36edo]].
As a Fibonacci number, 34edo contains a fraction of an octave which is a close approximation to the logarithmic phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[MOSScales|Moment of Symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and | -6 2 6 0 0 -13 >. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo|36edo]].


=Rank two temperaments=
=Rank two temperaments=