Pythagorean family: Difference between revisions
No edit summary |
→Catler temperament: added 64/63 as a possible generator |
||
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo|12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. | The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo|12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. | ||
Line 55: | Line 56: | ||
=Catler temperament= | =Catler temperament= | ||
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings | In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings. Possible generators are 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7, 7/5, and most importantly, 64/63. | ||
Commas: 81/80, 128/125 | Commas: 81/80, 128/125 |