35edo: Difference between revisions

Xenwolf (talk | contribs)
simplified links via redirect (with temperament name)
Spt3125 (talk | contribs)
m formatting
Line 1: Line 1:
35-tET or 35-[[EDO|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[cent|34.29¢]] each.
35-tET or 35-[[EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[cent|34.29¢]] each.


As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal_edos|macrotonal edos]]: [[5edo|5edo]] and [[7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[Just_intonation_subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile; you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[greenwood]] and [[secund]] temperaments, as well as 11-limit [[muggles]], and the 35f val is an excellent tuning for 13-limit muggles.
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[Just_intonation_subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile; you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[greenwood]] and [[secund]] temperaments, as well as 11-limit [[muggles]], and the 35f val is an excellent tuning for 13-limit muggles.
 
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[MOS|MOS]] of 3L2s: 9 4 9 9 4.


=Notation=
=Notation=
Line 9: Line 7:
{| class="wikitable"
{| class="wikitable"
|-
|-
| style="text-align:center;" | Degrees
! style="text-align:center;" | Degrees
| style="text-align:center;" | Cents
! style="text-align:center;" | Cents
| colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|Up/down ]][[Ups_and_Downs_Notation|Notation]]
! colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|Up/down ]][[Ups_and_Downs_Notation|Notation]]
|-
|-
| style="text-align:center;" | 0
| style="text-align:center;" | 0
Line 230: Line 228:
|}
|}


= =
==Ups and downs for chords==
 
==
Ups and downs can be used to name 35edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.
Ups and downs can be used to name 35edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.


Line 256: Line 252:


=Intervals=
=Intervals=
(Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)
(Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)


{| class="wikitable"
{| class="wikitable"
|-
|-
| | Degrees
! | Degrees
| | Cents value
! | Cents value
| | Ratios in2.5.7.11.17 subgroup
! | Ratios in2.5.7.11.17 subgroup
| | Ratios with flat 3
! | Ratios with flat 3
| | Ratios with sharp 3
! | Ratios with sharp 3
| | Ratios with patent 9
! | Ratios with patent 9
|-
|-
| | 0
| | 0
Line 514: Line 509:
|}
|}


==


=Rank two temperaments=
=Rank two temperaments=
Line 613: Line 607:
|}
|}


=<span style="background-color: #ffffff;">Scales</span>=
=Scales=
 
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[MOS]] of 3L2s: 9 4 9 9 4.
== ==


==<span style="background-color: #ffffff;">Commas</span>==
=Commas=
35EDO tempers out the following commas. (Note: This assumes the val &lt; 35 55 81 98 121 130|.)
35EDO tempers out the following commas. (Note: This assumes the val &lt; 35 55 81 98 121 130|.)


{| class="wikitable"
{| class="wikitable"
|-
|-
! | '''Comma'''
! | Comma
! | '''Monzo'''
! | Monzo
! | '''Value (Cents)'''
! | Value (Cents)
! | '''Name 1'''
! | Name 1
! | '''Name 2'''
! | Name 2
! | '''Name 3'''
|-
|-
| style="text-align:center;" | 2187/2048
| style="text-align:center;" | 2187/2048
Line 634: Line 626:
| style="text-align:center;" | Apotome
| style="text-align:center;" | Apotome
| style="text-align:center;" | Whitewood comma
| style="text-align:center;" | Whitewood comma
| |
|-
|-
| style="text-align:center;" | 6561/6250
| style="text-align:center;" | 6561/6250
Line 641: Line 632:
| style="text-align:center;" | Ripple comma
| style="text-align:center;" | Ripple comma
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|-
|-
| style="text-align:center;" | 10077696/9765625
| style="text-align:center;" | 10077696/9765625
Line 648: Line 638:
| style="text-align:center;" | Mynic comma
| style="text-align:center;" | Mynic comma
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|-
|-
| style="text-align:center;" | 3125/3072
| style="text-align:center;" | 3125/3072
Line 655: Line 644:
| style="text-align:center;" | Small diesis
| style="text-align:center;" | Small diesis
| style="text-align:center;" | Magic comma
| style="text-align:center;" | Magic comma
| |
|-
|-
| style="text-align:center;" | 405/392
| style="text-align:center;" | 405/392
Line 662: Line 650:
| style="text-align:center;" | Greenwoodma
| style="text-align:center;" | Greenwoodma
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|-
|-
| style="text-align:center;" | 16807/16384
| style="text-align:center;" | 16807/16384
Line 669: Line 656:
| style="text-align:center;" |  
| style="text-align:center;" |  
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|-
|-
| style="text-align:center;" | 525/512
| style="text-align:center;" | 525/512
Line 676: Line 662:
| style="text-align:center;" | Avicenna
| style="text-align:center;" | Avicenna
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|-
|-
| style="text-align:center;" | 126/125
| style="text-align:center;" | 126/125
Line 683: Line 668:
| style="text-align:center;" | Starling comma
| style="text-align:center;" | Starling comma
| style="text-align:center;" | Septimal semicomma
| style="text-align:center;" | Septimal semicomma
| |
|-
|-
| style="text-align:center;" | 99/98
| style="text-align:center;" | 99/98
Line 690: Line 674:
| style="text-align:center;" | Mothwellsma
| style="text-align:center;" | Mothwellsma
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|-
|-
| style="text-align:center;" | 66/65
| style="text-align:center;" | 66/65
Line 697: Line 680:
| style="text-align:center;" |  
| style="text-align:center;" |  
| style="text-align:center;" |  
| style="text-align:center;" |  
| |
|}
|}


== ==
=Music=
 
==Music==
[http://soonlabel.com/xenharmonic/archives/2348 Little Prelude &amp; Fugue, "The Bijingle" by Claudi Meneghin]
[http://soonlabel.com/xenharmonic/archives/2348 Little Prelude &amp; Fugue, "The Bijingle" by Claudi Meneghin]


[http://www.archive.org/download/Transcendissonance/05Self-destructingMechanicalForest-CityOfTheAsleep.mp3 Self-Destructing Mechanical Forest] by Chuckles McGee (in Secund[9])
[http://www.archive.org/download/Transcendissonance/05Self-destructingMechanicalForest-CityOfTheAsleep.mp3 Self-Destructing Mechanical Forest] by Chuckles McGee (in Secund[9])
[[Category:35edo]]
[[Category:35edo]]
[[Category:edo]]
[[Category:edo]]
[[Category:listen]]
[[Category:listen]]
[[Category:theory]]
[[Category:theory]]