User:Lhearne/Extra-Diatonic Intervals: Difference between revisions

introduced soft edit: an edit that adds content that may be accepted by the page owner and added to the page, and may include short comments about something out of place
m completed appendix tables (lists of interval name sets without intermediates)
Line 327: Line 327:
P1 M2 M3 m3 P4 P5 M6 m6 m7 P8,  
P1 M2 M3 m3 P4 P5 M6 m6 m7 P8,  


If we don't have major being below minor, we can hide it with some secondary interval names:  
If we don't want to have major being below minor, we can hide it with some secondary interval names:  


P1 M2 Sm3 sM3 P4 P5 Sm6 sM6 m7 P8, arriving at Augmented[9].  
P1 M2 Sm3 sM3 P4 P5 Sm6 sM6 m7 P8, arriving at Augmented[9].  
We say that our first Mavila[9] interval names are not ''well-ordered'', where for an interval name set to be well-ordered, for each degree major must be above minor. By extension we defined a well-ordered interval names set as one in which ... ≤ dd ≤ d ≤ m ≤ M ≤ A ≤ AA ≤ ... or ... ≤ dd ≤ d ≤ P ≤ A ≤ AA ≤ ..., and where s_ ≤ _ ≤ S_ (where '_' represents any of ... dd, d, m, (P), M, A, AA ...).
The primary interval names for Augmented[9] 1|1 (3) are well-ordered.


We might think that the primary interval names of 9edo are the same as our first spelling of Mavila[9] 4|4 above, however we note that the third step is half-way between M2 and m3, and so is primarily a serd. The fourth step, half-way between M3 and P4 is a thourth. If the M3 was a serd, it is also a m2, meaning that the second step is half-way between P1 and m2, and is primarily a unicond. Our primary interval names for 9edo are as follows:  
We might think that the primary interval names of 9edo are the same as our first spelling of Mavila[9] 4|4 above, however we note that the third step is half-way between M2 and m3, and so is primarily a serd. The fourth step, half-way between M3 and P4 is a thourth. If the M3 was a serd, it is also a m2, meaning that the second step is half-way between P1 and m2, and is primarily a unicond. Our primary interval names for 9edo are as follows:  
Line 345: Line 349:
P1 1-2 M2 m2 M3 m3 3-4 P4 4-5 P5 5-6 M6 m6 M7 m7 7-8 P8.  
P1 1-2 M2 m2 M3 m3 3-4 P4 4-5 P5 5-6 M6 m6 M7 m7 7-8 P8.  


Following the same path as in 9edo, we could also write 16edo as:  
Following the same path as in 9edo, the primary well-ordered interval name set for 16edo is:  


P1 1-2 Sm2 sM2 Sm3 sM3 3-4 P4 4-5 P5 5-6 Sm6 sM6 Sm7 sM7 7-8 P8,  
P1 1-2 Sm2 sM2 Sm3 sM3 3-4 P4 4-5 P5 5-6 Sm6 sM6 Sm7 sM7 7-8 P8,  
Line 372: Line 376:
P1 m3 M2 P4 M3 P5 m7 M6 P8,  
P1 m3 M2 P4 M3 P5 m7 M6 P8,  


which are the same as the primary intervals for 8edo, but with M3 rather than 4-5, we see our diatonic interval names begin to cross over. If this is a problem, we may use some secondary interval names to address it, i.e.
which are the same as the primary intervals for 8edo, but with M3 rather than 4-5, we see our diatonic interval names begin to cross over. We will add to our definition of well-ordered interval names that no interval names from interval-class ''n''-1 may be subtended by a larger number of steps that any interval names from interval-class ''n.'' As above, we can may use some secondary interval names to address it, leading to
 
P1 sM2 M2 P4 S4 P5 m7 Sm7 P8,


P1 sM2 M2 P4 S4 P5 m7 Sm7 P8.
as the primary well-ordered interval name set.


If we also re-write M2 and m7 as Sm3 and sM6, we get Porcupine[8] 4|3.
If we also re-write M2 and m7 as Sm3 and sM6, we get Porcupine[8] 4|3.
Line 380: Line 386:
Using some secondary interval names to 'fix' the order leads us to  
Using some secondary interval names to 'fix' the order leads us to  


P1 sM2 M2 P4 4-5 P5 m7 M6 P8
P1 sM2 M2 P4 S4 P5 m7 M6 P8


The primary interval names for Father[13] 6|6:
The primary interval names for Father[13] 6|6:
Line 516: Line 522:
== Lists of edos and MOS scales ==
== Lists of edos and MOS scales ==


=== Primary interval names for edos ===
=== Primary well-ordered (unless otherwise noted) interval names for edos ===
2edo: P1 P4/4-5/P5 P8
2edo: P1 P4/4-5/P5 P8


Line 529: Line 535:
7edo: P1 N2 N3 P4 P5 N6 N7 P8
7edo: P1 N2 N3 P4 P5 N6 N7 P8


8edo: P1 m3 M2 P4 4-5 P5 m7 M6 P8
8edo: P1 sM2 M2 P4 4-5 P5 m7 Sm7 P8


9edo: P1 1-2 2-3 3-4 P4 P5 5-6 6-7 7-8 P8  
9edo: P1 1-2 2-3 3-4 P4 P5 5-6 6-7 7-8 P8  
Line 535: Line 541:
10edo: P1/1-2 N2 2-3 N3 3-4/P4 4-5 P5/5-6 N6 6-7 N7 7-8/P8
10edo: P1/1-2 N2 2-3 N3 3-4/P4 4-5 P5/5-6 N6 6-7 N7 7-8/P8


11edo: P1 M2 M3 N3 m3 P4 P5 M6 N6 m6 m7 P8
11edo: P1 Sm2 Sm3 N3 sM3 P4 P5 Sm6 N6 sM6 sM7 P8


12edo: P1 m2 M2 m3 M3 P4 4-5 P5 m6 M6 m7 M7 P8
12edo: P1 m2 M2 m3 M3 P4 4-5 P5 m6 M6 m7 M7 P8
Line 545: Line 551:
15edo: P1/1-2 S1/Sm2 sM2 2-3 Sm3 sM3 3-4/P4 S4 s5 P5/5-6 Sm6 sM6 6-7 Sm7 sM7/s8 7-8/P8
15edo: P1/1-2 S1/Sm2 sM2 2-3 Sm3 sM3 3-4/P4 S4 s5 P5/5-6 Sm6 sM6 6-7 Sm7 sM7/s8 7-8/P8


16edo: P1 1-2 M2 m2 M3 m3 3-4 P4 4-5 P5 5-6 M6 m6 M7 m7 7-8 P8
16edo: P1 1-2 Sm2 sM2 Sm3 sM3 3-4 P4 4-5 P5 5-6 Sm6 sM6 Sm7 sM7 7-8 P8


17edo: P1 N1 N2 M2 m3 N3 M3 P4 N4 N5 P5 m6 N6 M6 m7 N7 N8 P8
17edo: P1 N1 N2 M2 m3 N3 M3 P4 N4 N5 P5 m6 N6 M6 m7 N7 N8 P8
Line 555: Line 561:
22edo: P1 m2 Sm2 sM2 M2 m3 Sm3 sM3 M3 P4 S4 4-5 s5 P5 m6 Sm6 sM6 M6 m7 Sm7 sM7 M7 P8
22edo: P1 m2 Sm2 sM2 M2 m3 Sm3 sM3 M3 P4 S4 4-5 s5 P5 m6 Sm6 sM6 M6 m7 Sm7 sM7 M7 P8


23edo: P1 d1 1-2 M2 m2 2-3 M3 m3 3-4 A4 P4 d4 A5 P5 d5 5-6 M6 m6 6-7 M7 m7 7-8 A8 P8
23edo: P1 S1 1-2 Sm2 sM2 2-3 Sm3 sM3 3-4 A4 P4 S4 s5 P5 d5 5-6 Sm6 sM6 6-7 Sm7 sM7 7-8 s8 P8 (can't quite get it well-ordered)


24edo: P1 1-2 m2 N2 M2 2-3 m3 N3 M3 3-4 P4 N4 4-5 N5 P5 5-6 m6 N6 M6 6-7 m7 N7 M7 7-8 P8
24edo: P1 1-2 m2 N2 M2 2-3 m3 N3 M3 3-4 P4 N4 4-5 N5 P5 5-6 m6 N6 M6 6-7 m7 N7 M7 7-8 P8
Line 573: Line 579:
38edo: P1 S1 1-2 sm2 m2 N2 M2 SM2 2-3 sm3 m3 N3 M3 SM3 3-4 s4 P4 N4 A4 4-5 d5 N5 P5 S5 5-6 sm6 m6 N6 M6 SM6 6-7 sm7 m7 N7 M7 SM7 7-8 s8 P8
38edo: P1 S1 1-2 sm2 m2 N2 M2 SM2 2-3 sm3 m3 N3 M3 SM3 3-4 s4 P4 N4 A4 4-5 d5 N5 P5 S5 5-6 sm6 m6 N6 M6 SM6 6-7 sm7 m7 N7 M7 SM7 7-8 s8 P8


41edo: P1 N1 sm2 m2 Sm2 N2 sM2 M2 SM2 sm3 m3 Sm3 N3 sM3 M3 SM3 s4 P4 S4 N4 d5 A4 N5 sM5 P5 S5 sm6 m6 Sm6 N6 sM6 M6 SM6 sm7 m7 Sm7 N7 sM7 M7 SM7 N8 P8
41edo: P1 N1 sm2 m2 Sm2 N2 sM2 M2 SM2 sm3 m3 Sm3 N3 sM3 M3 SM3 s4 P4 S4 N4 sA4 Sd5 N5 sM5 P5 S5 sm6 m6 Sm6 N6 sM6 M6 SM6 sm7 m7 Sm7 N7 sM7 M7 SM7 N8 P8


43edo: P1 S1 1-2 A1/sm2 m2 dd3 AA1 M2 SM2/d3 2-3 A2/sm3 m3 dd4 AA2 M3 SM3/d4 3-4 A3/s4 P4 dd5 AA3 A4 d5 dd6 AA4 P5 S5/A6 5-6 A5/sm6 m6 dd7 AA5 M6 SM6/d7 6-7 A6/sm7 m7 dd8 AA6 M7 SM7/d8 7-8 s8 P8
43edo: P1 S1 1-2 A1/sm2 m2 dd3 AA1 M2 SM2/d3 2-3 A2/sm3 m3 dd4 AA2 M3 SM3/d4 3-4 A3/s4 P4 dd5 AA3 A4 d5 dd6 AA4 P5 S5/A6 5-6 A5/sm6 m6 dd7 AA5 M6 SM6/d7 6-7 A6/sm7 m7 dd8 AA6 M7 SM7/d8 7-8 s8 P8 (not possible to find a well-ordered interval name set)


46edo: P1 S1 sm2 m2 Sm2 A1 d3 sM2 M2 SM2 sm3 m3 Sm3 A2 d4 sM3 M3 SM3 s4 P4 S4 sd5 d5 4-5 A4 SA4 s5 P5 S5 sm6 m6 Sm6 A4 d7 sM6 M6 SM6 sm7 m7 Sm7 A6 d8 sM7 M7 SM7 s8 P8
46edo: P1 S1 sm2 m2 Sm2 A1 d3 sM2 M2 SM2 sm3 m3 Sm3 A2 d4 sM3 M3 SM3 s4 P4 S4 sd5 d5 4-5 A4 SA4 s5 P5 S5 sm6 m6 Sm6 A4 d7 sM6 M6 SM6 sm7 m7 Sm7 A6 d8 sM7 M7 SM7 s8 P8 (not possible to find a well-ordered interval name set)


=== Interval names for MOS scales ===
=== Interval names for MOS scales ===
Line 671: Line 677:
== Appendix ==
== Appendix ==


=== Primary interval names for edos, without intermediates ===
=== Primary well-ordered interval names for edos, without intermediates ===
2edo: P1 P4/P5 P8
2edo: P1 P4/P5 P8


Line 684: Line 690:
7edo: P1 N2 N3 P4 P5 N6 N7 P8
7edo: P1 N2 N3 P4 P5 N6 N7 P8


8edo: P1 m3 M2 P4 M3/m6 P5 m7 M6 P8
8edo: P1 sM2 M2 P4 S4/s5 P5 m7 Sm7 P8


9edo: P1 M2 M3 m3 P4 P5 M6 m6 m7 P8  
9edo: P1 M2 M3 m3 P4 P5 M6 m6 m7 P8  


10edo: P1/m2 N2 M2/m3 N3 M3/P4 4-5 P5/m6 N6 M6/m7 N7 M7/P8
10edo: P1/m2 N2 M2/m3 N3 M3/P4 S4/s5 P5/m6 N6 M6/m7 N7 M7/P8


11edo: P1 M2 M3 N3 m3 P4 P5 M6 N6 m6 m7 P8
11edo: P1 Sm2 Sm3 N3 sM3 P4 P5 Sm6 N6 sM6 sM7 P8


12edo: P1 m2 M2 m3 M3 P4 A4/d5 P5 m6 M6 m7 M7 P8
12edo: P1 m2 M2 m3 M3 P4 A4/d5 P5 m6 M6 m7 M7 P8
Line 700: Line 706:
15edo: P1/m2 S1/Sm2 sM2 M2/m3 Sm3 sM3 M3/P4 S4 s5 P5/m6 Sm6 sM6 M6/m7 Sm7 sM7/s8 M7/P8
15edo: P1/m2 S1/Sm2 sM2 M2/m3 Sm3 sM3 M3/P4 S4 s5 P5/m6 Sm6 sM6 M6/m7 Sm7 sM7/s8 M7/P8


16edo: P1 d1 M2 m2 M3 m3 A4 P4 d4/A5 P5 d5 M6 m6 M7 m7 A8 P8
16edo: P1 S1 Sm2 sM2 Sm3 sM3 A4 P4 S4/s5 P5 d5 Sm6 sM6 Sm7 sM7 s8 P8 (not quite well-ordered without intermediates)


17edo: P1 N1 N2 M2 m3 N3 M3 P4 N4 N5 P5 m6 N6 M6 m7 N7 N8 P8
17edo: P1 N1 N2 M2 m3 N3 M3 P4 N4 N5 P5 m6 N6 M6 m7 N7 N8 P8
Line 708: Line 714:
21edo: P1 S1 sm2 N2 SM2 sm3 N3 SM3 s4 P4 SA4 sd5 P5 S5 sm6 N6 SM6 sm7 N7 SM7 d8 P8
21edo: P1 S1 sm2 N2 SM2 sm3 N3 SM3 s4 P4 SA4 sd5 P5 S5 sm6 N6 SM6 sm7 N7 SM7 d8 P8


22edo: P1 m2 Sm2 sM2 M2 m3 Sm3 sM3 M3 P4 S4 4-5 s5 P5 m6 Sm6 sM6 M6 m7 Sm7 sM7 M7 P8
22edo: P1 m2 Sm2 sM2 M2 m3 Sm3 sM3 M3 P4 S4 sA4/Sd5 s5 P5 m6 Sm6 sM6 M6 m7 Sm7 sM7 M7 P8


23edo: P1 d1 A2 M2 m2 d2/A3 M3 m3 d3 A4 P4 d4 A5 P5 d5 A6 M6 m6 d6/A7 M7 m7 d7 A8 P8
23edo: P1 d1 A2 M2 m2 d2/A3 M3 m3 d3 A4 P4 d4 A5 P5 d5 A6 M6 m6 d6/A7 M7 m7 d7 A8 P8 (can't get close to well-ordered without intermediates, so not bothering)


24edo: P1 S1/sm2 m2 N2 M2 SM2/sm3 m3 N3 M3 SM3/s4 P4 N4 A4/d5 N5 P5 S5/sm6 m6 N6 M6 SM6/sm7 m7 N7 M7 SM7/s8 P8
24edo: P1 S1/sm2 m2 N2 M2 SM2/sm3 m3 N3 M3 SM3/s4 P4 N4 A4/d5 N5 P5 S5/sm6 m6 N6 M6 SM6/sm7 m7 N7 M7 SM7/s8 P8
Line 718: Line 724:
27edo: P1 m2 Sm2 N2 sM2 M2 m3 Sm3 N3 sM3 M3 P4 N4 d6 A3 N5 P5 m6 Sm6 N6 sM6 M6 m7 Sm7 N7 sM7 M7 P8
27edo: P1 m2 Sm2 N2 sM2 M2 m3 Sm3 N3 sM3 M3 P4 N4 d6 A3 N5 P5 m6 Sm6 N6 sM6 M6 m7 Sm7 N7 sM7 M7 P8


28edo: P1 sA1 1-2 Sm2 N2 sM2 2-3 Sm3 N3 sM3 3-4 S4 N4 sA4 4-5 Sd5 N5 s5 5-6 Sm6 N6 sM6 6-7 Sm7 N7 sM7 7-8 Sd8 P8
28edo: P1 sA1 1-2 Sm2 N2 sM2 2-3 Sm3 N3 sM3 3-4 S4 N4 sA4 4-5 Sd5 N5 s5 5-6 Sm6 N6 sM6 6-7 Sm7 N7 sM7 7-8 Sd8 P8 (can't complete without intermediates)


29edo: P1 S1 m2 Sm2 sM2 M2 SM2/sm3 m3 Sm3 sM3 M3 SM3/s4 P4 S4 d5 A4 s5 P5 S5/sm6 m6 Sm6 sM6 M6 SM6/sm7 m7 Sm7 sM7 M7 s8 P8
29edo: P1 S1 m2 Sm2 sM2 M2 SM2/sm3 m3 Sm3 sM3 M3 SM3/s4 P4 S4 d5 A4 s5 P5 S5/sm6 m6 Sm6 sM6 M6 SM6/sm7 m7 Sm7 sM7 M7 s8 P8
Line 724: Line 730:
31edo: P1 N1 sm2 m2 N2 M2 SM2 sm3 m3 N3 M3 SM3 s4 P4 N4 A4 d5 N4 P5 S5 sm6 m6 N6 M6 SM6 sm7 m7 N7 M7 SM7 N8 P8
31edo: P1 N1 sm2 m2 N2 M2 SM2 sm3 m3 N3 M3 SM3 s4 P4 N4 A4 d5 N4 P5 S5 sm6 m6 N6 M6 SM6 sm7 m7 N7 M7 SM7 N8 P8


34edo: P1 1-2 m2 Sm2 N2 sM2 M2 2-3 m3 Sm3 N3 sM3 M3 3-4 P4 S4 N4 4-5 N5 s5 P5 5-6 m6 Sm6 N6 sM6 M6 6-7 m7 Sm7 N7 sM7 M7 7-8 P8
34edo: P1 S1 m2 Sm2 N2 sM2 M2 2-3 m3 Sm3 N3 sM3 M3 3-4 P4 S4 N4 4-5 N5 s5 P5 5-6 m6 Sm6 N6 sM6 M6 6-7 m7 Sm7 N7 sM7 M7 s8 P8 (can't complete without intermediates)


38edo: P1 S1 A1 sm2 m2 N2 M2 SM2 A2/d3 sm3 m3 N3 M3 SM3 d4 s4 P4 N4 A4 4-5 d5 N5 P5 S5 A5 sm6 m6 N6 M6 SM6 A6/d7 sm7 m7 N7 M7 SM7 d8 s8 P8
38edo: P1 S1 A1 sm2 m2 N2 M2 SM2 A2/d3 sm3 m3 N3 M3 SM3 d4 s4 P4 N4 A4 SA4/sd5 d5 N5 P5 S5 A5 sm6 m6 N6 M6 SM6 A6/d7 sm7 m7 N7 M7 SM7 d8 s8 P8


41edo: P1 N1 sm2 m2 Sm2 N2 sM2 M2 SM2 sm3 m3 Sm3 N3 sM3 M3 SM3 s4 P4 S4 N4 d5 A4 N5 sM5 P5 S5 sm6 m6 Sm6 N6 sM6 M6 SM6 sm7 m7 Sm7 N7 sM7 M7 SM7 N8 P8
41edo: P1 N1 sm2 m2 Sm2 N2 sM2 M2 SM2 sm3 m3 Sm3 N3 sM3 M3 SM3 s4 P4 S4 N4 d5 A4 N5 sM5 P5 S5 sm6 m6 Sm6 N6 sM6 M6 SM6 sm7 m7 Sm7 N7 sM7 M7 SM7 N8 P8


43edo: P1 S1 1-2 A1/sm2 m2 dd3 AA1 M2 SM2/d3 2-3 A2/sm3 m3 dd4 AA2 M3 SM3/d4 3-4 A3/s4 P4 dd5 AA3 A4 d5 dd6 AA4 P5 S5/A6 5-6 A5/sm6 m6 dd7 AA5 M6 SM6/d7 6-7 A6/sm7 m7 dd8 AA6 M7 SM7/d8 7-8 s8 P8
43edo: P1 d2 AA7 A1/sm2 m2 dd3 AA1 M2 SM2/d3 AAA1/ddd4 A2/sm3 m3 dd4 AA2 M3 SM3/d4 AAA2/ddd5 A3/s4 P4 dd5 AA3 A4 d5 dd6 AA4 P5 S5/A6 AAA4/ddd7 A5/sm6 m6 dd7 AA5 M6 SM6/d7 AAA5/ddd8 A6/sm7 m7 dd8 AA6 M7 SM7/d8 dd2 s8 P8
 
Without intermediates 43edo in particular is very unruly, however things began to break down in 43edo anyway, where there is no available well-ordered interval name set.


46edo: P1 S1 sm2 m2 Sm2 A1 d3 sM2 M2 SM2 sm3 m3 Sm3 A2 d4 sM3 M3 SM3 s4 P4 S4 sd5 d5 Sd5/sA4 A4 SA4 s5 P5 S5 sm6 m6 Sm6 A4 d7 sM6 M6 SM6 sm7 m7 Sm7 A6 d8 sM7 M7 SM7 s8 P8
46edo: P1 S1 sm2 m2 Sm2 A1 d3 sM2 M2 SM2 sm3 m3 Sm3 A2 d4 sM3 M3 SM3 s4 P4 S4 sd5 d5 Sd5/sA4 A4 SA4 s5 P5 S5 sm6 m6 Sm6 A4 d7 sM6 M6 SM6 sm7 m7 Sm7 A6 d8 sM7 M7 SM7 s8 P8
(not possible to find a well-ordered interval name set)


=== Interval names for MOS scales, without intermediates ===
=== Interval names for MOS scales, without intermediates ===
Line 747: Line 757:
Blackwood[15] 1|1 (5): P1/m2 S1/Sm2 sM2 M2/m3 Sm3 sM3 M3/P4 S4 s5 P5/m6 Sm6 sM6 M6/m7 Sm7 sM7/s8 M7/P8
Blackwood[15] 1|1 (5): P1/m2 S1/Sm2 sM2 M2/m3 Sm3 sM3 M3/P4 S4 s5 P5/m6 Sm6 sM6 M6/m7 Sm7 sM7/s8 M7/P8


Diminished[8] 1|0 (4): P1 sM2 Sm3 P4 4-5 Sm6 sM6 sM7 P8
Diminished[8] 1|0 (4): P1 sM2 Sm3 P4 sA4/Sd5 Sm6 sM6 sM7 P8


Diminished[12] 1|1 (4): P1 Sm2 sM2 Sm3 sM3 P4 4-5 P5 Sm6 sM6 Sm7 sM7 P8
Diminished[12] 1|1 (4): P1 Sm2 sM2 Sm3 sM3 P4 sA4/Sd5 P5 Sm6 sM6 Sm7 sM7 P8


Injera[12] 3|2 (2): P1 sm2 M2 sm3 SM3 P4 4-5 P5 sm6 M6 m7 SM7 P8
Injera[12] 3|2 (2): P1 sm2 M2 sm3 SM3 P4 sA4/Sd5 P5 sm6 M6 m7 SM7 P8


Injera[14] 3|3 (2): P1 sm2 M2 sm3 m3 SM3 P4 4-5 P5 sm6 M6 SM6 m7 SM7 P8
Injera[14] 3|3 (2): P1 sm2 M2 sm3 m3 SM3 P4 sA4/Sd5 P5 sm6 M6 SM6 m7 SM7 P8


Machine[5] 2|2: P1 M2 M3 m6 m7 P8
Machine[5] 2|2: P1 M2 M3 m6 m7 P8
Line 789: Line 799:
Neutral[17] 8|8: P1 N1 N2 M2 m3 N3 M3 P4 N4 N5 P5 m6 N6 M6 m7 N7 N8 P8
Neutral[17] 8|8: P1 N1 N2 M2 m3 N3 M3 P4 N4 N5 P5 m6 N6 M6 m7 N7 N8 P8


Pajara[10] 2|2 (2): P1 Sm2 M2 sM3 P4 4-5 P5 Sm6 m7 sM7 P8
Pajara[10] 2|2 (2): P1 Sm2 M2 sM3 P4 sA4/Sd5 P5 Sm6 m7 sM7 P8


Pajara[12] 3|2 (2): P1 Sm2 M2 Sm3 sM3 P4 4-5 P5 Sm6 sM6 m7 sM7 P8
Pajara[12] 3|2 (2): P1 Sm2 M2 Sm3 sM3 P4 sA4/Sd5 P5 Sm6 sM6 m7 sM7 P8


Porcupine[7] 3|3: P1 sM2 Sm3 P4 P5 sM6 Sm7 P8
Porcupine[7] 3|3: P1 sM2 Sm3 P4 P5 sM6 Sm7 P8