7edo: Difference between revisions
m →Octave stretch: fixes & unify the precision |
→Octave stretch: unify section titles |
||
Line 482: | Line 482: | ||
3/7 is on the intersection of [[meantone]] and [[mavila]], and has MOS's of 331 and 21211, making 7edo the first edo with a non-equalized, non-1L''n''s [[pentatonic]] mos. This is in part because 7edo is close to low-complexity JI for its size, and is the second edo with a good fifth for its size (after [[5edo]]), the fifth serving as a generator for the edo's meantone and mavila interpertations. | 3/7 is on the intersection of [[meantone]] and [[mavila]], and has MOS's of 331 and 21211, making 7edo the first edo with a non-equalized, non-1L''n''s [[pentatonic]] mos. This is in part because 7edo is close to low-complexity JI for its size, and is the second edo with a good fifth for its size (after [[5edo]]), the fifth serving as a generator for the edo's meantone and mavila interpertations. | ||
== Octave stretch == | == Octave stretch or compression == | ||
[[Stretched and compressed tuning|Stretched-octaves]] tunings such as [[11edt]], [[18ed6]] or [[Ed257/128 #7ed257/128|7ed257/128]] greatly improves 7edo's approximation of harmonics 3, 5 and 11, at the cost of slightly worsening 2 and 7, and greatly worsening 13. If one is hoping to use 7edo for [[11-limit]] harmonies, then these are good choices to make that easier. | [[Stretched and compressed tuning|Stretched-octaves]] tunings such as [[11edt]], [[18ed6]] or [[Ed257/128 #7ed257/128|7ed257/128]] greatly improves 7edo's approximation of harmonics 3, 5 and 11, at the cost of slightly worsening 2 and 7, and greatly worsening 13. If one is hoping to use 7edo for [[11-limit]] harmonies, then these are good choices to make that easier. | ||