User:BudjarnLambeth/Draft related tunings section: Difference between revisions

BudjarnLambeth (talk | contribs)
Octave stretch or compression: cleanup. Try to make the section more compact
Line 71: Line 71:
What follows is a comparison of stretched- and compressed-octave 36edo tunings.
What follows is a comparison of stretched- and compressed-octave 36edo tunings.


 
; [[21edf]]  
; [[21edf]]
* Step size: 33.426{{c}}, octave size: 1203.3{{c}}
* Step size: 33.426{{c}}
{{Harmonics in equal|21|3|2|columns=11|collapsed=true}}
* Octave size: 1203.3{{c}}
{{Harmonics in equal|21|3|2|columns=12|collapsed=true}}
{{Harmonics in equal|21|3|2|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 21edf (continued)}}
{{Harmonics in equal|21|3|2|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 21edf (continued)}}


Stretching the octave of 36edo by a little over 3{{c}} results in improved primes 5, 11, and 13, but worse primes 2, 3, and 7. This approximates all primes up to 11 within ''12.0{{c}}''. The tuning 21edf does this.
Stretching the octave of 36edo by a little over 3{{c}} results in improved primes 5, 11, and 13, but worse primes 2, 3, and 7. This approximates all primes up to 11 within ''12.0{{c}}''. The tuning 21edf does this.


; [[57edt]]
; [[57edt]]
* Step size: 33.368{{c}}
* Step size: 33.368{{c}}, octave size: 1201.2{{c}}
* Octave size: 1201.2{{c}}
{{Harmonics in equal|57|3|1|columns=11|collapsed=true}}
{{Harmonics in equal|57|3|1|columns=12|collapsed=true}}
{{Harmonics in equal|57|3|1|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 57edt (continued)}}
{{Harmonics in equal|57|3|1|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 57edt (continued)}}


If one intends to use both 36edo's vals for 5/1 at once, stretching the octave of 36edo by about 1{{c}} optimises 36edo for that dual-5 usage, while also making slight improvements to primes 3, 7, 11, and 13. This approximates all primes up to 11 within ''16.6{{c}}''. Five almost-identical tunings do this: 57edt, [[101ed7]], [[zpi|155zpi]], and the [[TE]] and [[WE]] 2.3.7.13 subgroup WE tunings of 36edo.
If one intends to use both 36edo's vals for 5/1 at once, stretching the octave of 36edo by about 1{{c}} optimises 36edo for that dual-5 usage, while also making slight improvements to primes 3, 7, 11, and 13. This approximates all primes up to 11 within ''16.6{{c}}''. Five almost-identical tunings do this: 57edt, [[101ed7]], [[zpi|155zpi]], and the 2.3.7.13-subgroup [[TE]] and [[WE]] tunings of 36et.


 
; 36edo
; Pure-octaves 36edo
* Step size: 33.333{{c}}, octave size: 1200.0{{c}}  
* Step size: 33.333{{c}}
{{Harmonics in equal|36|2|1|intervals=integer|columns=11|collapsed=true}}
* Octave size: 1200.0{{c}}  
{{Harmonics in equal|36|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36edo (continued)}}
{{Harmonics in equal|36|2|1|columns=12|collapsed=true}}
{{Harmonics in equal|36|2|1|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36edo (continued)}}


Pure-octaves 36edo approximates all primes up to 11 within ''15.3{{c}}''.
Pure-octaves 36edo approximates all primes up to 11 within ''15.3{{c}}''.


; [[TE|36et, 11-limit TE tuning]]
* Step size: 33.287{{c}}, octave size: 1198.3{{c}}
{{Harmonics in cet|33.287|columns=11|collapsed=true|title=Approximation of harmonics in 11-limit TE tuning of 36et}}
{{Harmonics in cet|33.287|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 11-limit TE tuning of 36et (continued)}}


; [[TE|11-limit TE 36edo]]
Compressing the octave of 36edo by about 2{{c}} results in much improved primes 5 and 11, but much worse primes 7 and 13. This approximates all primes up to 11 within ''9.7{{c}}''. The 11- and 13-limit TE tunings of 36et both do this, as do their respective WE tunings.
* Step size: 33.287{{c}}
* Octave size: 1198.3{{c}}
{{Harmonics in cet|33.287|columns=12|collapsed=true|title=Approximation of harmonics in 11lim WE-tuned 36edo}}
{{Harmonics in cet|33.287|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 11lim WE-tuned 36edo (continued)}}
 
Compressing the octave of 36edo by about 2{{c}} results in much improved primes 5 and 11, but much worse primes 7 and 13. This approximates all primes up to 11 within ''9.7{{c}}''. The 11- and 13-limit TE tunings of 36edo both do this, as do their respective WE tunings.
 


{| class="wikitable sortable center-all mw-collapsible mw-collapsed"
{| class="wikitable sortable center-all mw-collapsible mw-collapsed"
|+ Stretched/compressed tunings comparison table
|+ style="white-space: nowrap;" | Comparison of stretched and compressed tunings
|-
|-
! rowspan="2" | Tuning !! rowspan="2" | Step size<br>(cents) !! colspan="6" | Prime error (cents)  
! rowspan="2" | Tuning !! rowspan="2" | Step size<br>(cents) !! colspan="6" | Prime error (cents)