Rodan: Difference between revisions

mNo edit summary
m mentioned 14/11
Line 18: Line 18:
As can be elucidated by [[S-expression]]s, rodan is very much a "counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars.
As can be elucidated by [[S-expression]]s, rodan is very much a "counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars.


As for further extensions, slendric temperaments often find [[55/32]] at 4 generator steps (tempering out [[385/384]] and [[441/440]]), giving new interpretations to the quark as [[55/54]] and [[56/55]]; 55/32 is particularly accurate in the tuning subrange appropriate for rodan, and so [[11/1|harmonic 11]] can easily be found at -13 generator steps. The diatonic minor third ([[32/27]]) in hemifamity temperaments represents the square root of [[7/5]], for which [[13/11]] is a good interpretation (tempering out [[352/351]] and [[847/845]]), which turns out to place [[13/1|harmonic 13]] at -22 generator steps. Finally, [[17/13]] is a good interpretation of the slendric subfourth comprising two generators, otherwise equated to [[21/16]] (tempering out [[273/272]] and [[833/832]]), and this places [[17/1|harmonic 17]] at -20 generator steps. Thus proceeds the canonical extension of rodan out to the [[17-limit]].
As for further extensions, slendric temperaments often find [[55/32]] at 4 generator steps (tempering out [[385/384]] and [[441/440]]), giving new interpretations to the quark as [[55/54]] and [[56/55]]; 55/32 is particularly accurate in the tuning subrange appropriate for rodan, and so [[11/1|harmonic 11]] can easily be found at -13 generator steps. It is also worth mentioning that this equates the diatonic major third to [[14/11]], tempering out [[896/891]]. A [[2.3.7.11 subgroup]] version of rodan, known as ''radon'', uses exclusively this mapping and forgoes interpreting the 5th harmonic.
 
Toward the [[13-limit]], the diatonic minor third ([[32/27]]) in hemifamity temperaments represents the square root of [[7/5]], for which [[13/11]] is a good interpretation (tempering out [[352/351]] and [[847/845]]), which turns out to place [[13/1|harmonic 13]] at -22 generator steps. Finally, [[17/13]] is a good interpretation of the slendric subfourth comprising two generators, otherwise equated to [[21/16]] (tempering out [[273/272]] and [[833/832]]), and this places [[17/1|harmonic 17]] at -20 generator steps. Thus proceeds the canonical extension of rodan out to the [[17-limit]].


See [[Gamelismic clan #Rodan]] for more information.  
See [[Gamelismic clan #Rodan]] for more information.