Tenney–Euclidean temperament measures: Difference between revisions
Turns out Gene's math on badness is wrong. Rework over |
This part was also insane |
||
Line 86: | Line 86: | ||
: '''Note''': that is the definition used by Graham Breed's temperament finder. | : '''Note''': that is the definition used by Graham Breed's temperament finder. | ||
Gene Ward Smith defines TE error as the ratio ‖''M''<sub>''W''</sub> ∧ ''J''<sub>''W''</sub>‖/‖''M''<sub>''W''</sub>‖, derived from the relationship of TE simple badness and TE complexity. See the next section. We denote this definition of TE error ''Ψ''. | Gene Ward Smith defines the TE error as the ratio ‖''M''<sub>''W''</sub> ∧ ''J''<sub>''W''</sub>‖/‖''M''<sub>''W''</sub>‖, derived from the relationship of TE simple badness and TE complexity. See the next section. We denote this definition of TE error ''Ψ''. From {{nowrap|‖''M''<sub>''W''</sub> ∧ ''J''<sub>''W''</sub>‖/‖''M''<sub>''W''</sub>‖}} we can extract a coefficient {{nowrap| sqrt(''C''(''n'', ''r'' + 1)/''C''(''n'', ''r'')) {{=}} sqrt((''n'' − ''r'')(''r'' + 1)) }}, which relates ''Ψ'' with ''E'' as follows: | ||
$$ \Psi = \sqrt{\frac{r + 1}{n - r}} E $$ | |||
Also, if we set the rank ''r'' to 1, we get {{nowrap| (''n'' − 1)/2 }}. It follows that dividing TE error by this value gives a constant of proportionality such that | |||
$$ \psi = \sqrt{\frac{2}{n - 1}} E $$ | |||
gives another error, called the ''adjusted error'', which makes the error of a rank-''r'' temperament correspond to the errors of the edo vals which support it; so that requiring the edo val error to be less than {{nowrap|(1 + ''ε'')''ψ''}} for any positive ''ε'' results in an infinite set of vals supporting the temperament. | |||
''G'' and ''ψ'' error both have the advantage that higher-rank temperament error corresponds directly to rank-1 error, but the RMS normalization has the further advantage that in the rank-1 case, {{nowrap|''G'' {{=}} sin ''θ''}}, where ''θ'' is the angle between ''J''<sub>''W''</sub> and the val in question. Multiplying by 1200 to obtain a result in cents leads to 1200 sin(''θ''), the TE error in cents. | ''G'' and ''ψ'' error both have the advantage that higher-rank temperament error corresponds directly to rank-1 error, but the RMS normalization has the further advantage that in the rank-1 case, {{nowrap|''G'' {{=}} sin ''θ''}}, where ''θ'' is the angle between ''J''<sub>''W''</sub> and the val in question. Multiplying by 1200 to obtain a result in cents leads to 1200 sin(''θ''), the TE error in cents. |