S-expression: Difference between revisions

m numerator and denominator of triangle-particulars are always /2
Xenllium (talk | contribs)
mNo edit summary
Line 4: Line 4:
As S-expressions are deployed widely on the wiki and in the broader xen community, below is a list of what the most common S-expression categories imply in terms of [[tempering out|tempering]].  The linked sections provide deeper information into each comma family.
As S-expressions are deployed widely on the wiki and in the broader xen community, below is a list of what the most common S-expression categories imply in terms of [[tempering out|tempering]].  The linked sections provide deeper information into each comma family.


* [[#Sk (square-particulars)|Square superparticulars]]: '''S''k''''', superparticular fractions of the form {{sfrac|''k''<sup>2</sup>|''k''<sup>2</sup> − 1}}.<br />Tempering out S''k'' equates {{nowrap|''k'' + 1|''k''}} and {{sfrac|''k''|''k'' − 1}}.
* [[#Sk (square-particulars)|Square superparticulars]]: '''S''k''''', superparticular fractions of the form {{sfrac|''k''<sup>2</sup>|''k''<sup>2</sup> − 1}}. <br>Tempering out S''k'' equates {{sfrac|''k'' + 1|''k''}} and {{sfrac|''k''|''k'' − 1}}.
* [[#Sk*S(k + 1) (triangle-particulars)|Triangle-particulars]]: {{nowrap|'''S''k'' * S(''k'' + 1)'''}}, superparticular fractions of the form {{sfrac|''k''(''k'' + 1)/2|(''k'' − 1)(''k'' + 2)/2}}.<br />Tempering out {{nowrap|S''k'' * S(''k'' + 1)}} equates {{sfrac|''k'' + 2|''k'' + 1}} and {{sfrac|''k''|''k'' − 1}}, or {{sfrac|''k'' + 2|''k''}} and {{sfrac|''k'' + 1|''k'' − 1}}.
* [[#Sk*S(k + 1) (triangle-particulars)|Triangle-particulars]]: {{nowrap|'''S''k'' * S(''k'' + 1)'''}}, superparticular fractions of the form {{sfrac|''k''(''k'' + 1)/2|(''k'' − 1)(''k'' + 2)/2}}. <br>Tempering out {{nowrap|S''k'' * S(''k'' + 1)}} equates {{sfrac|''k'' + 2|''k'' + 1}} and {{sfrac|''k''|''k'' − 1}}, or {{sfrac|''k'' + 2|''k''}} and {{sfrac|''k'' + 1|''k'' − 1}}.
* [[#Sk2 * S(k + 1) and S(k − 1) * Sk2 (lopsided commas)|Lopsided commas]]: {{nowrap|'''(S''k'')<sup>2</sup> * S(''k'' + 1)'''}} and {{nowrap|'''(S''k'')<sup>2</sup> * S(''k'' − 1)'''}}.<br />Tempering out the former equates {{sfrac|''k'' + 2|''k''}} with {{pars|{{sfrac|''k''|''k'' − 1}}}}<sup>2</sup>, and tempering out the latter equates {{sfrac|''k''|''k'' − 2}} with {{pars|{{sfrac|''k'' + 1|''k''}}}}<sup>2</sup>.
* [[#Sk2 * S(k + 1) and S(k − 1) * Sk2 (lopsided commas)|Lopsided commas]]: {{nowrap|'''(S''k'')<sup>2</sup> * S(''k'' + 1)'''}} and {{nowrap|'''(S''k'')<sup>2</sup> * S(''k'' − 1)'''}}. <br>Tempering out the former equates {{sfrac|''k'' + 2|''k''}} with {{pars|{{sfrac|''k''|''k'' − 1}}}}<sup>2</sup>, and tempering out the latter equates {{sfrac|''k''|''k'' − 2}} with {{pars|{{sfrac|''k'' + 1|''k''}}}}<sup>2</sup>.
* [[#Sk/S(k + 1) (ultraparticulars)|Ultraparticulars]]: {{nowrap|'''S''k''/S(''k'' + 1)'''}}. Tempering this out equates {{sfrac|''k'' + 2|''k'' − 1}} with {{pars|{{sfrac|''k'' + 1|''k''}}}}<sup>3</sup>.
* [[#Sk/S(k + 1) (ultraparticulars)|Ultraparticulars]]: {{nowrap|'''S''k''/S(''k'' + 1)'''}}. Tempering this out equates {{sfrac|''k'' + 2|''k'' − 1}} with {{pars|{{sfrac|''k'' + 1|''k''}}}}<sup>3</sup>.
* [[#Sk/S(k + 2) (semiparticulars)|Semiparticulars]]: {{nowrap|'''S''k''/S(''k'' + 2)'''}}. Tempering this out equates {{sfrac|''k'' + 3|''k'' − 1}} with {{pars|{{sfrac|''k'' + 2|''k''}}}}<sup>2</sup>.
* [[#Sk/S(k + 2) (semiparticulars)|Semiparticulars]]: {{nowrap|'''S''k''/S(''k'' + 2)'''}}. Tempering this out equates {{sfrac|''k'' + 3|''k'' − 1}} with {{pars|{{sfrac|''k'' + 2|''k''}}}}<sup>2</sup>.