58edo: Difference between revisions

Theory: sort commas by limit
Line 4: Line 4:


== Theory ==
== Theory ==
58edo is a strong system in the [[11-limit|11]]-, [[13-limit|13]]- and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]].  
58edo is a strong system in the [[11-limit|11-]], [[13-limit|13-]] and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]].  


While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since {{nowrap|58 {{=}} 2 × 29}}, 58edo shares the same excellent fifth with [[29edo]].
While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since {{nowrap|58 {{=}} 2 × 29}}, 58edo shares the same excellent fifth with [[29edo]].


As an equal temperament, 58et tempers out [[2048/2025]], [[126/125]], [[1728/1715]], [[144/143]], [[176/175]], [[896/891]], [[243/242]], [[5120/5103]], [[351/350]], [[364/363]], [[441/440]], and [[540/539]]. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[regular temperament|temperament]]s plus a number of [[gravity family]] extensions, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]].
As an equal temperament, 58et tempers out [[2048/2025]] in the [[5-limit]]; [[126/125]], [[1728/1715]], and [[5120/5103]] in the [[7-limit]]; [[176/175]], [[243/242]], [[441/440]], [[540/539]], and [[896/891]] in the 11-limit; [[144/143]], [[351/350]], [[364/363]] in the 13-limit. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[regular temperament|temperament]]s plus a number of [[gravity family]] [[extension]]s, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]].


Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval.
Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval.
Line 16: Line 16:


=== Subsets and supersets ===
=== Subsets and supersets ===
58edo contains [[2edo]] and [[29edo]] as subsets.  
58edo contains [[2edo]] and [[29edo]] as subsets.


== Intervals ==
== Intervals ==