Logarithmic approximants: Difference between revisions
m +category |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 120: | Line 120: | ||
Tuning the octave pure while preserving the ratios specified above yields, respectively, 31edo, 19edo and 34edo. | Tuning the octave pure while preserving the ratios specified above yields, respectively, 31edo, 19edo and 34edo. | ||
Tuning the intervals <u>9/7</u>, <u>7/5</u> and <u>5/3</u> in the ratio of their approximants (1/8 : 1/6 : 1/4 = 3 : 4 : 6) and adjusting their sum to a perfect twelfth yields the [[ | Tuning the intervals <u>9/7</u>, <u>7/5</u> and <u>5/3</u> in the ratio of their approximants (1/8 : 1/6 : 1/4 = 3 : 4 : 6) and adjusting their sum to a perfect twelfth yields the equally tempered [[Bohlen–Pierce scale]]. | ||
Tuning the intervals <u>11/9</u>, <u>9/7</u>, <u>3/2</u> and <u>5/3</u> in the ratio of their approximants (1/10 : 1/8 : 1/5 : 1/4 = 4 : 5 : 8 : 10) and adjusting their sum to a major tenth yields [[88cET|88 cent equal temperament]]. | Tuning the intervals <u>11/9</u>, <u>9/7</u>, <u>3/2</u> and <u>5/3</u> in the ratio of their approximants (1/10 : 1/8 : 1/5 : 1/4 = 4 : 5 : 8 : 10) and adjusting their sum to a major tenth yields [[88cET|88 cent equal temperament]]. |