Canou family: Difference between revisions
Update keys |
The 19712/19683 extension is now canon. I need to think about 17-limit semicanou so they are commented out now |
||
Line 1: | Line 1: | ||
The '''canou family''' of [[ | The '''canou family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperament]]s [[tempering out|tempers out]] the [[canousma]], 4802000/4782969 ({{monzo| 4 -14 3 4 }}), a 7-limit comma measuring about 6.9 [[cent]]s. | ||
== Canou == | == Canou == | ||
{{Main| Canou temperament }} | {{Main| Canou temperament }} | ||
The canou temperament features a [[period]] of an [[octave]] and [[generator]]s of [[3/2]] and [[81/70]]. The 81/70-generator is about 255 cents | The canou temperament features a [[period]] of an [[octave]] and [[generator]]s of [[3/2]] and [[81/70]]. The ~81/70-generator is about 255 cents. Three make [[14/9]]; four make [[9/5]]. It therefore splits the large septimal diesis, [[49/48]], into three equal parts, making two distinct [[interseptimal interval]]s related to the 35th harmonic. | ||
A basic tuning option would be [[99edo]], although [[80edo]] is even simpler and distinctive. More intricate tunings are provided by [[311edo]] and [[410edo]], whereas the [[optimal patent val]] goes up to [[1131edo]], relating it to the [[amicable]] temperament. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 22: | Line 20: | ||
: Angle (3/2, 81/70) = 73.88 deg | : Angle (3/2, 81/70) = 73.88 deg | ||
[[Optimal tuning]] ([[CTE]]): ~2 = | [[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.3175, ~81/70 = 254.6220 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit]]: 3 +c/14, 5 and 7 just | * [[7-odd-limit]]: 3 +c/14, 5 and 7 just | ||
: [[ | : [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.7 | ||
* [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | * [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | ||
: [[ | : [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5 | ||
{{Optimal ET sequence|legend=1| 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b }} | {{Optimal ET sequence|legend=1| 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b }} | ||
[[Badness]]: 1.122 × 10<sup>-3</sup> | [[Badness]] (Smith): 1.122 × 10<sup>-3</sup> | ||
[[Complexity spectrum]]: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5 | [[Complexity spectrum]]: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5 | ||
== | == Undecimal canou == | ||
The fifth is in the range where a stack of four (i.e. a major third) can serve as ~[[19/15]] and a stack of five (i.e. a major seventh) can serve as ~[[19/10]], tempering out [[1216/1215]]. Moreover, the last generator of ~81/70 is sharpened to slightly overshoot [[22/19]], so it only makes sense to temper out their difference, [[1540/1539]]. The implied 11-limit comma is the [[symbiotic comma]], which suggests the [[wilschisma]] should also be tempered out in the 13-limit. | |||
Since the syntonic comma has been split in two, it is natural to map [[19/17]] to the mean of [[9/8]] and [[10/9]], tempering out [[1445/1444]]. From a commatic point of view, notice the other 11-limit comma, [[42875/42768]], is {{nowrap| S34 × S35<sup>2</sup> }}, suggesting tempering out [[595/594]] (S34 × S35), [[1156/1155]] (S34), and [[1225/1224]] (S35), which coincides with above. Finally, we can map [[23/20]] to the fourth complement of 22/19 to make an equidistant sequence consisting of 7/6, 22/19, 23/20, and 8/7, tempering out [[760/759]]. 311edo remains an excellent tuning in all the limits. | |||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 71: | Line 45: | ||
{{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | {{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | ||
[[Optimal tuning]] ([[CTE]]): ~2 = | [[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.2115, ~81/70 = 254.6215 | ||
{{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | {{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | ||
[[Badness]]: 2.04 × 10<sup>-3</sup> | [[Badness]] (Smith): 2.04 × 10<sup>-3</sup> | ||
[[Complexity spectrum]]: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5 | [[Complexity spectrum]]: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5 | ||
Line 86: | Line 60: | ||
Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | ||
Optimal tuning (CTE): ~2 = | Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.2075, ~81/70 = 254.6183 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | ||
Badness: 2.56 × 10<sup>-3</sup> | Badness (Smith): 2.56 × 10<sup>-3</sup> | ||
=== 17-limit === | === 17-limit === | ||
Line 99: | Line 73: | ||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | ||
Optimal tuning (CTE): ~2 = | Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.2296, ~51/44 = 254.6012 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | ||
Badness: 1.49 × 10<sup>-3</sup> | Badness (Smith): 1.49 × 10<sup>-3</sup> | ||
=== 19-limit === | === 19-limit === | ||
Line 112: | Line 86: | ||
Mapping: {{mapping|| 1 0 0 -1 -7 -13 -5 -6 | 0 1 2 2 7 10 6 7 | 0 0 -4 3 -3 4 -2 -4 }} | Mapping: {{mapping|| 1 0 0 -1 -7 -13 -5 -6 | 0 1 2 2 7 10 6 7 | 0 0 -4 3 -3 4 -2 -4 }} | ||
Optimal tuning (CTE): ~2 = | Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.2355, ~22/19 = 254.5930 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | ||
Badness: 1.00 × 10<sup>-3</sup> | Badness (Smith): 1.00 × 10<sup>-3</sup> | ||
== Canta == | == Canta == | ||
Line 127: | Line 101: | ||
{{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | {{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | ||
[[Optimal tuning]] ([[CTE]]): ~2 = | [[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8093, ~64/55 = 254.3378 | ||
{{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e }} | {{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e }} | ||
Line 140: | Line 114: | ||
Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | ||
Optimal tuning (CTE): ~2 = | Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.6228, ~64/55 = 254.3447 | ||
{{Optimal ET sequence|legend=1| 75e, 80, 99ef, 179ef }} | {{Optimal ET sequence|legend=1| 75e, 80, 99ef, 179ef }} | ||
Line 147: | Line 121: | ||
== Semicanou == | == Semicanou == | ||
Semicanou adds [[9801/9800]], the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing 99/70~140/99. Note that 99/70 = (81/70)(11/9), this extension is more than natural. | Semicanou adds [[9801/9800]], the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing 99/70~140/99. Note that {{nowrap| 99/70 {{=}} (81/70)(11/9) }}, this extension is more than natural. | ||
The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9 | The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by about one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9, 11/9, 11/9, and 11/10. | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 161: | Line 133: | ||
: mapping generators: ~99/70, ~3, ~81/70 | : mapping generators: ~99/70, ~3, ~81/70 | ||
[[Optimal tuning]] ([[CTE]]): ~99/70 = | [[Optimal tuning]] ([[CTE]]): ~99/70 = 600.0000, ~3/2 = 702.4262, ~81/70 = 254.6191 | ||
{{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | {{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | ||
Line 174: | Line 146: | ||
Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | ||
Optimal tuning (CTE): ~99/70 = | Optimal tuning (CTE): ~99/70 = 600.0000, ~3/2 = 702.4802, ~81/70 = 254.6526 | ||
{{Optimal ET sequence|legend=1| 80f, 94, 118f, 198, 410 }} | {{Optimal ET sequence|legend=1| 80f, 94, 118f, 198, 410 }} | ||
Line 180: | Line 152: | ||
Badness: 2.974 × 10<sup>-3</sup> | Badness: 2.974 × 10<sup>-3</sup> | ||
<!-- debatable canonicity | |||
==== 17-limit ==== | ==== 17-limit ==== | ||
Subgroup: 2.3.5.7.11.13.17 | Subgroup: 2.3.5.7.11.13.17 | ||
Line 187: | Line 160: | ||
Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | ||
Optimal tuning (CTE): ~99/70 = | Optimal tuning (CTE): ~99/70 = 600.0000, ~3/2 = 702.4415, ~81/70 = 254.6663 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 198g, 212g, 292, 410 }} | {{Optimal ET sequence|legend=1| 94, 118f, 198g, 212g, 292, 410 }} | ||
Line 200: | Line 173: | ||
Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | ||
Optimal tuning (CTE): ~99/70 = | Optimal tuning (CTE): ~99/70 = 600.0000, ~3/2 = 702.4030, ~81/70 = 254.6870 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | {{Optimal ET sequence|legend=1| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | ||
Badness: 2.177 × 10<sup>-3</sup> | Badness: 2.177 × 10<sup>-3</sup> | ||
--> | |||
=== Semicanoumint === | === Semicanoumint === | ||
This extension was named ''semicanou'' in the earlier materials. It adds [[352/351]], the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32. | This extension was named ''semicanou'' in the earlier materials. It adds [[352/351]], the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32. | ||
Line 215: | Line 188: | ||
Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | ||
Optimal tuning (CTE): ~99/70 = | Optimal tuning (CTE): ~99/70 = 600.0000, ~3/2 = 702.5374, ~81/70 = 254.6819 | ||
{{Optimal ET sequence|legend=1| 80, 94, 118, 174d, 198, 490f }} | {{Optimal ET sequence|legend=1| 80, 94, 118, 174d, 198, 490f }} | ||
Line 232: | Line 205: | ||
Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | ||
Optimal tuning (CTE): ~3/2 = 702.7417, ~15/13 = 254.3382 | Optimal tuning (CTE): ~99/70 = 600.0000, ~3/2 = 702.7417, ~15/13 = 254.3382 | ||
{{Optimal ET sequence|legend=1| 80, 104c, 118f, 198f, 420cff }} | {{Optimal ET sequence|legend=1| 80, 104c, 118f, 198f, 420cff }} |