87edo: Difference between revisions
→Theory: note its fifth from 29edo. +subsets and supersets |
→Theory: 17\87 is even closer to the CTE and CWE gen. The 11-limit can use the same tuning cuz it's the canonical extension. Same for clyde |
||
Line 9: | Line 9: | ||
The equal temperament [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]]. | The equal temperament [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]]. | ||
87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & | 87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00061 cents sharper than the 13-limit [[CWE tuning|CWE generator]]. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.01479 cents sharp of the 13-limit CWE generator. | ||
=== Prime harmonics === | === Prime harmonics === |