14edo: Difference between revisions
→Theory: +octave stretch, +subsets and supersets |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 11: | Line 11: | ||
The character of 14edo does not well serve those seeking low-[[limit]] JI approaches, with the exception of [[Subgroup|5:7:9:11:17:19]] (which is quite well approximated, relative to other JI approximations of the low-numbered edos). However, the [[ratio]]s 7/5, 7/6, 9/7, 10/7, 10/9, 11/7, 11/9, and 11/10 are all recognizably approximated, and if you accept that 14edo offers approximations of these intervals, you end up with a low-complexity, high-damage [[11-limit]] temperament where the [[comma]]s listed later in this page are [[tempered out]]. This leads to some of the bizarre equivalences described in the second "Approximate ratios" column in the table. | The character of 14edo does not well serve those seeking low-[[limit]] JI approaches, with the exception of [[Subgroup|5:7:9:11:17:19]] (which is quite well approximated, relative to other JI approximations of the low-numbered edos). However, the [[ratio]]s 7/5, 7/6, 9/7, 10/7, 10/9, 11/7, 11/9, and 11/10 are all recognizably approximated, and if you accept that 14edo offers approximations of these intervals, you end up with a low-complexity, high-damage [[11-limit]] temperament where the [[comma]]s listed later in this page are [[tempered out]]. This leads to some of the bizarre equivalences described in the second "Approximate ratios" column in the table. | ||
14et has quite a bit of [[xenharmonic]] appeal, in a similar way to [[17edo|17et]], on account of having three types of 3rd and three types of 6th, rather than the usual two of [[12et]]. Since 14et also has a recognizable 4th and 5th, this makes it good for those wishing to explore alternative triadic harmonies without adding significantly more notes. It possesses a [[triad]]-rich 9-note [[mos scale]] of [[5L 4s]], wherein 7 of 9 notes are [[tonic]] to a subminor, supermajor, and/or neutral triad. | 14et has quite a bit of [[xenharmonic]] appeal, in a similar way to [[17edo|17et]], on account of having three types of 3rd and three types of 6th, rather than the usual two of [[12et]]. Since 14et also has a recognizable 4th and 5th, this makes it good for those wishing to explore alternative triadic harmonies without adding significantly more notes. It possesses a [[triad]]-rich 9-note [[mos scale]] of [[5L 4s]], wherein 7 of 9 notes are [[tonic]] to a subminor, supermajor, and/or neutral triad. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 30: | Line 30: | ||
! Approximate<br>[[Harmonic]]s | ! Approximate<br>[[Harmonic]]s | ||
! Approximate<br>Ratios 1 <ref group="note">{{sg|limit=2.7/5.9/5.11/5.17/5.19/5 [[subgroup]]}}</ref> | ! Approximate<br>Ratios 1 <ref group="note">{{sg|limit=2.7/5.9/5.11/5.17/5.19/5 [[subgroup]]}}</ref> | ||
! Approximate<br>Ratios 2 <ref group="note">Based on treating 14edo as an 11-limit temperament of {{val| 14 22 32 39 48}} (14c)</ref> | ! Approximate<br>Ratios 2 <ref group="note">Based on treating 14edo as an 11-limit temperament of {{val| 14 22 32 39 48}} (14c).</ref> | ||
! Approximate<br>Ratios 3 <ref> | ! Approximate<br>Ratios 3 <ref group="note">Nearest 15-odd-limit intervals by [[direct approximation]].</ref> | ||
! colspan="3" | [[Ups and Downs Notation]] | ! colspan="3" | [[Ups and Downs Notation]] | ||
! Interval Type | ! Interval Type | ||
Line 217: | Line 217: | ||
|} | |} | ||
=== Sagittal notation === | |||
===Sagittal notation=== | |||
This notation uses the same sagittal sequence as [[9edo#Sagittal notation|9-EDO]], is a subset of the notations for EDOs [[28edo#Sagittal notation|28]] and [[42edo#Second-best fifth notation|42b]], and is a superset of the notation for [[7edo#Sagittal notation|7-EDO]]. | This notation uses the same sagittal sequence as [[9edo#Sagittal notation|9-EDO]], is a subset of the notations for EDOs [[28edo#Sagittal notation|28]] and [[42edo#Second-best fifth notation|42b]], and is a superset of the notation for [[7edo#Sagittal notation|7-EDO]]. | ||
Line 298: | Line 296: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
Line 431: | Line 430: | ||
| Island comma | | Island comma | ||
|} | |} | ||
== Scales == | == Scales == | ||
{{Main|List of MOS scales in {{PAGENAME}}}} | |||
Here are the modes that create MOS scales in 14edo shown on horagrams from Scala, skipping multiples of 14: | Here are the modes that create MOS scales in 14edo shown on horagrams from Scala, skipping multiples of 14: | ||
Line 490: | Line 473: | ||
== See also == | == See also == | ||
* [[Lumatone mapping for 14edo]] | * [[Lumatone mapping for 14edo]] | ||
== Notes == | |||
<references group="note" /> | |||
== Further reading == | == Further reading == |