253edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
m Theory: cleanup
Line 3: Line 3:


== Theory ==
== Theory ==
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the [[prime harmonic]]s from 5 to 17 are all slightly flat. It [[tempers out]] [[32805/32768]] in the 5-limit; [[2401/2400]] in the 7-limit; [[385/384]], 1375/1372 and [[4000/3993]] in the 11-limit; [[325/324]], [[1575/1573]] and [[2200/2197]] in the 13-limit; [[375/374]] and [[595/594]] in the 17-limit. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits.
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the [[prime harmonic]]s from 5 to 17 are all slightly flat. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[385/384]], [[1375/1372]] and [[4000/3993]] in the [[11-limit]]; [[325/324]], [[1575/1573]] and [[2200/2197]] in the [[13-limit]]; [[375/374]] and [[595/594]] in the [[17-limit]]. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits.


=== Prime harmonics ===
=== Prime harmonics ===
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 253 factors into {{factorisation|253}}, and has subset edos [[11edo]] and [[23edo]].  
Since 253 factors into 11 × 23, and has subset edos [[11edo]] and [[23edo]].


== Regular temperament properties ==
== Regular temperament properties ==