28812/28561: Difference between revisions
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox Interval|Name=Tesseract Comma|Ratio=28812/28561}} | {{Infobox Interval|Name=Tesseract Comma|Ratio=28812/28561}} | ||
'''28812/28561''' (the Tesseract Comma) is a small comma in the 2.3.7.13 subgroup. It is the amount by which four [[13/7]] sevenths fall short of the [[6/1|sixth harmonic]], and the amount by which four [[14/13]] semitones fall short of the [[4/3]] perfect fourth. | '''28812/28561''' (the Tesseract Comma) is a small comma in the 2.3.7.13 subgroup. It is the amount by which four [[13/7]] sevenths fall short of the [[6/1|sixth harmonic]], and the amount by which four [[14/13]] semitones fall short of the [[4/3]] perfect fourth. | ||
It can be factored into the [[28672/28561|Voltage Comma]] and the [[1029/1024|Gamelisma]], which provides the 77 & 87 temperament '''Cubical''' (see below); it can also be factored into the [[Octaphore]] plus four [[729/728|Squbemas]] (squbemae?), which makes the Tesseract Comma a useful extension to the rank-3 Octaphore temperament. | |||
== Temperaments == | == Temperaments == | ||
Line 12: | Line 14: | ||
[[Comma list]]: 28812/28561 | [[Comma list]]: 28812/28561 | ||
[[Mapping]]: [ | [[Mapping]]: [⟨1 2 2 3], ⟨0 -4 0 -1], ⟨0 0 1 1]] | ||
[[Optimization|Optimal tuning]] ([[CTE]]): ~2 = 1 | [[Optimization|Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~14/13 = 124.539, ~7/4 = 967.452 | ||
[[Optimal ET sequence]]: [[9edo|9]], [[10edo|10]], [[19edo|19]], [[29edo|29]], [[37edo|37b]], [[48edo|48]], [[49edo|49f]], [[58edo|58]], [[67edo|67]], [[68edo|68]], [[77edo|77]], [[87edo|87]] | [[Optimal ET sequence]]: [[9edo|9]], [[10edo|10]], [[19edo|19]], [[29edo|29]], [[37edo|37b]], [[48edo|48]], [[49edo|49f]], [[58edo|58]], [[67edo|67]], [[68edo|68]], [[77edo|77]], [[87edo|87]] | ||
[[Badness]]: 2.528 | [[Badness]]: 2.528 | ||
==== 2.3.5.7.13 subgroup ==== | |||
By noticing that three generators is almost exactly 5/4, we can add prime 5 to the subgroup by tempering out the [[Cantonisma]]. We can equivalently temper out the [[105/104|Animist comma]] by noticing that the difference between 4/3 and 5/4 (that is, 16/15) is equivalent in mapping to 14/13. | |||
Subgroup: 2.3.5.7.13 | |||
Comma list: 28812/28561, 10985/10976 | |||
Mapping: [⟨1 2 2 2 3], ⟨0 -4 3 0 -1], ⟨0 0 0 1 1]] | |||
Optimal tuning (CTE): ~2 = 1\1, ~14/13 = 126.679, ~7/4 = 962.564 | |||
Optimal ET sequence: [[9edo|9]], [[10edo|10]], [[19edo|19]], [[29edo|29]], [[37edo|37b]], [[38edo|38]], [[47edo|47]], [[57edo|57]], [[58edo|58]], [[67edo|67c]], 76, [[87edo|86c]] | |||
Badness: 1.818 | |||
=== Cubical === | === Cubical === | ||
Line 27: | Line 44: | ||
Comma list: 28672/28561, 1029/1024 | Comma list: 28672/28561, 1029/1024 | ||
Mapping: [ | Mapping: [⟨1 10 0 3], ⟨0 0 4], ⟨0 3 1]] | ||
Optimal tuning (CTE): ~2 = 1 | Optimal tuning (CTE): ~2 = 1\1, ~13/8 = 841.527 | ||
Optimal ET sequence: [[10edo|10]], [[37edo|37b]], [[47edo|47]], [[57edo|57]], [[67edo|67]], [[77edo|77]], [[87edo|87]], [[97edo|97]], [[107edo|107]], [[124edo|124b]], [[144edo|144]] | Optimal ET sequence: [[10edo|10]], [[37edo|37b]], [[47edo|47]], [[57edo|57]], [[67edo|67]], [[77edo|77]], [[87edo|87]], [[97edo|97]], [[107edo|107]], [[124edo|124b]], [[144edo|144]] | ||
Badness: 1.261 | Badness: 1.261 | ||
=== 2.3.7.13 Octaphore === | |||
''See also: [[Octaphore#Tridecimal Octaphore|Tridecimal Octaphore]]'' | |||
By factoring the Tesseract Comma into the Octaphore and the Squbesma, we get a 13-limit extension of the rank-2 '''Octaphore''' temperament. | |||
Subgroup: 2.5.7.13 | |||
Comma list: | |||
Mapping: [⟨1 2 2 4 4 5], ⟨0 -8 0 -23 2 -25], ⟨0 0 1 0 -2 0]] | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/26 = 62.281, ~5/4 = 386.512 | |||
Optimal ET sequence: [[19edo|19]], [[58edo|58]], [[77edo|77]], [[135edo|135]], [[96edo|96d]] | |||
== Etymology == | == Etymology == |