28812/28561: Difference between revisions

Unque (talk | contribs)
mNo edit summary
Unque (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox Interval|Name=Tesseract Comma|Ratio=28812/28561}}
{{Infobox Interval|Name=Tesseract Comma|Ratio=28812/28561}}


'''28812/28561''' (the Tesseract Comma) is a small comma in the 2.3.7.13 subgroup.  It is the amount by which four [[13/7]] sevenths fall short of the [[6/1|sixth harmonic]], and the amount by which four [[14/13]] semitones fall short of the [[4/3]] perfect fourth. It can be factored into the [[28672/28561|Voltage Comma]] and the [[1029/1024|Gamelisma]], which provides the 77 & 87 temperament '''Cubical''' (see below).
'''28812/28561''' (the Tesseract Comma) is a small comma in the 2.3.7.13 subgroup.  It is the amount by which four [[13/7]] sevenths fall short of the [[6/1|sixth harmonic]], and the amount by which four [[14/13]] semitones fall short of the [[4/3]] perfect fourth.
 
It can be factored into the [[28672/28561|Voltage Comma]] and the [[1029/1024|Gamelisma]], which provides the 77 & 87 temperament '''Cubical''' (see below); it can also be factored into the [[Octaphore]] plus four [[729/728|Squbemas]] (squbemae?), which makes the Tesseract Comma a useful extension to the rank-3 Octaphore temperament.


== Temperaments ==
== Temperaments ==
Line 12: Line 14:
[[Comma list]]: 28812/28561
[[Comma list]]: 28812/28561


[[Mapping]]: [⟨2 -4 0], ⟨2 0 1], ⟨3 -1 1]]
[[Mapping]]: [⟨1 2 2 3], ⟨0 -4 0 -1], ⟨0 0 1 1]]


[[Optimization|Optimal tuning]] ([[CTE]]): ~2 = 1/1, ~14/13 = 124.539, ~7/4 = 967.452
[[Optimization|Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~14/13 = 124.539, ~7/4 = 967.452


[[Optimal ET sequence]]: [[9edo|9]], [[10edo|10]], [[19edo|19]], [[29edo|29]], [[37edo|37b]], [[48edo|48]], [[49edo|49f]], [[58edo|58]], [[67edo|67]], [[68edo|68]], [[77edo|77]], [[87edo|87]]
[[Optimal ET sequence]]: [[9edo|9]], [[10edo|10]], [[19edo|19]], [[29edo|29]], [[37edo|37b]], [[48edo|48]], [[49edo|49f]], [[58edo|58]], [[67edo|67]], [[68edo|68]], [[77edo|77]], [[87edo|87]]


[[Badness]]: 2.528
[[Badness]]: 2.528
==== 2.3.5.7.13 subgroup ====
By noticing that three generators is almost exactly 5/4, we can add prime 5 to the subgroup by tempering out the [[Cantonisma]].  We can equivalently temper out the [[105/104|Animist comma]] by noticing that the difference between 4/3 and 5/4 (that is, 16/15) is equivalent in mapping to 14/13.
Subgroup: 2.3.5.7.13
Comma list: 28812/28561, 10985/10976
Mapping: [⟨1 2 2 2 3], ⟨0 -4 3 0 -1], ⟨0 0 0 1 1]]
Optimal tuning (CTE): ~2 = 1\1, ~14/13 = 126.679, ~7/4 = 962.564
Optimal ET sequence: [[9edo|9]], [[10edo|10]], [[19edo|19]], [[29edo|29]], [[37edo|37b]], [[38edo|38]], [[47edo|47]], [[57edo|57]], [[58edo|58]], [[67edo|67c]], 76, [[87edo|86c]]
Badness: 1.818


=== Cubical ===
=== Cubical ===
Line 27: Line 44:
Comma list: 28672/28561, 1029/1024
Comma list: 28672/28561, 1029/1024


Mapping: [⟨10 -12], ⟨0 4], ⟨3 1]]
Mapping: [⟨1 10 0 3], ⟨0 0 4], ⟨0 3 1]]


Optimal tuning (CTE): ~2 = 1/1, ~13/8 = 841.527
Optimal tuning (CTE): ~2 = 1\1, ~13/8 = 841.527


Optimal ET sequence: [[10edo|10]], [[37edo|37b]], [[47edo|47]], [[57edo|57]], [[67edo|67]], [[77edo|77]], [[87edo|87]], [[97edo|97]], [[107edo|107]], [[124edo|124b]], [[144edo|144]]
Optimal ET sequence: [[10edo|10]], [[37edo|37b]], [[47edo|47]], [[57edo|57]], [[67edo|67]], [[77edo|77]], [[87edo|87]], [[97edo|97]], [[107edo|107]], [[124edo|124b]], [[144edo|144]]


Badness: 1.261
Badness: 1.261
=== 2.3.7.13 Octaphore ===
''See also: [[Octaphore#Tridecimal Octaphore|Tridecimal Octaphore]]''
By factoring the Tesseract Comma into the Octaphore and the Squbesma, we get a 13-limit extension of the rank-2 '''Octaphore''' temperament.
Subgroup: 2.5.7.13
Comma list:
Mapping: [⟨1 2 2 4 4 5], ⟨0 -8 0 -23 2 -25], ⟨0 0 1 0 -2 0]]
Optimal tuning (POTE): ~2 = 1\1, ~27/26 = 62.281, ~5/4 = 386.512
Optimal ET sequence: [[19edo|19]], [[58edo|58]], [[77edo|77]], [[135edo|135]], [[96edo|96d]]


== Etymology ==
== Etymology ==