Sensamagic clan: Difference between revisions

Fredg999 (talk | contribs)
m Skip disambiguation
ArrowHead294 (talk | contribs)
mNo edit summary
Line 2: Line 2:


== BPS ==
== BPS ==
{{Main|Bohlen-Pierce-Stearns}}
{{Main|Bohlen–Pierce–Stearns}}
''BPS'', for ''Bohlen–Pierce–Stearns'', is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].
''BPS'', for ''Bohlen–Pierce–Stearns'', is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].


Line 51: Line 51:
{{Main| Bohpier }}
{{Main| Bohpier }}


'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]].
'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen–Pierce equal temperament]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 113: Line 113:


=== Triboh ===
=== Triboh ===
'''Triboh''' is named after "[[39edt|Triple Bohlen-Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen-Pierce]] scale into three equal parts.  
'''Triboh''' is named after "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 289: Line 289:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Magus]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Magus]].''


Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as 46 & 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[Starling temperaments #Amigo|amigo]] (43 & 46) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as 46 & 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[Starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.


Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, 2 plus 3 times 3 = 11 generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, Magus can be thought of as a higher-complexity and sharper analogue of [[Würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[Magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, Magus can be thought of as a higher-complexity and sharper analogue of [[Würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[Magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7