Mohajira: Difference between revisions

Godtone (talk | contribs)
m the temperament data below does not include the relevant information and this link should not be obscure at the very bottom (both inconvenient & goes against convention)
ArrowHead294 (talk | contribs)
mNo edit summary
Line 18: Line 18:
Scales (Scala files):
Scales (Scala files):


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div class="toccolours mw-collapsible mw-collapsed" style="width: 600px; overflow: auto;">
<div style="line-height:1.6;">Interval table (10-note MOS, 2.3.5.7.11 POTE tuning)</div>
<div style="line-height: 1.6;">'''Interval table (10-note MOS, 2.3.5.7.11 POTE tuning)'''</div>
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
{| class="wikitable right-1 right-2 sortable"
{| class="wikitable right-1 right-2 sortable"
|+
|-
|-
! #Gens up
! #Gens up
! Cents <ref>octave-reduced</ref>
! Cents*
! class="unsortable"| Approximate ratios<ref>2.3.5.7.11, odd limit ≤ 27. JI readings in parentheses are outside the subgroup but are supported by the defining EDOs.</ref>
! class="unsortable" | Approximate ratios**
|-
|-
| 0
| 0
Line 68: Line 67:
| 32/21
| 32/21
|}
|}
<references/></div></div>
<nowiki />* Octave-reduced
 
<nowiki />** 2.3.5.7.11, odd limit &le; 27. JI readings in parentheses are outside the subgroup but are supported by the defining EDOs.
</div></div>


= Modes and MOS =
= Modes and MOS =
Line 87: Line 89:
|-
|-
| Iced Major
| Iced Major
| C D Ed Ft G A Bd C
| C D E{{demiflat2}} F{{demisharp2}} G A B{{demiflat2}} C
| M2 N3 S4 P5 M6 N7
| M2 N3 S4 P5 M6 N7
|-
|-
| Iced Locrian
| Iced Locrian
| D Ed Ft G A Bd C D
| D E{{demiflat2}} F{{demisharp2}} G A B{{demiflat2}} C D
| N2 N3 P4 P5 N6 m7
| N2 N3 P4 P5 N6 m7
|-
|-
| Iced Fridgian (Iced Minor)
| Iced Fridgian (Iced Minor)
| Ed Ft G A Bd C D Ed
| E{{demiflat2}} F{{demisharp2}} G A B{{demiflat2}} C D E{{demiflat2}}
| M2 N3 S4 P5 N6 N7
| M2 N3 S4 P5 N6 N7
|-
|-
| Iced Lydian
| Iced Lydian
| Ft G A Bd C D Ed Ft
| F{{demisharp2}} G A B{{demiflat2}} C D E{{demiflat2}} F{{demisharp2}}
| N2 N3 P4 s5 N6 m7
| N2 N3 P4 s5 N6 m7
|-
|-
| Iced Mixolydian
| Iced Mixolydian
| G A Bd C D Ed Ft G
| G A B{{demiflat2}} C D E{{demiflat2}} F{{demisharp2}} G
| M2 N3 P4 P5 N6 N7
| M2 N3 P4 P5 N6 N7
|-
|-
| Iced Dark Lydian (Iced Coffee)
| Iced Dark Lydian (Iced Coffee)
| A Bd C D Ed Ft G A
| A B{{demiflat2}} C D E{{demiflat2}} F{{demisharp2}} G A
| N2 m3 P4 s5 N6 m7
| N2 m3 P4 s5 N6 m7
|-
|-
| Iced Blizzard (Neutral Scale)
| Iced Blizzard (Neutral Scale)
| Bd C D Ed Ft G A Bd
| B{{demiflat2}} C D E{{demiflat2}} F{{demisharp2}} G A B{{demiflat2}}
| N2 N3 P4 P5 N6 N7
| N2 N3 P4 P5 N6 N7
|}
|}
Line 123: Line 125:
|-
|-
| Mode 1
| Mode 1
| C D Ed F G A Bd C
| C D E{{demiflat2}} F G A B{{demiflat2}} C
|-
|-
| Mode 2
| Mode 2
| D Ed F G A Bd C D
| D E{{demiflat2}} F G A B{{demiflat2}} C D
|-
|-
| Mode 3
| Mode 3
| Ed F G A Bd C D Ed
| E{{demiflat2}} F G A B{{demiflat2}} C D Ed
|-
|-
| Mode 4
| Mode 4
| F G A Bd C D Ed F
| F G A B{{demiflat2}} C D E{{demiflat2}} F
|-
|-
| Mode 5
| Mode 5
| G A Bd C D Ed F G
| G A B{{demiflat2}} C D E{{demiflat2}} F G
|-
|-
| Mode 6
| Mode 6
| A Bd C D Ed F G A
| A B{{demiflat2}} C D E{{demiflat2}} F G A
|-
|-
| Mode 7
| Mode 7
| Bd C D Ed F G A Bd
| B{{demiflat2}} C D E{{demiflat2}} F G A B{{demiflat2}}
|}
|}


Line 148: Line 150:
|-
|-
| Mode 1
| Mode 1
| C D E F G Ad Bd C
| C D E F G A{{demiflat2}} B{{demiflat2}} C
|-
|-
| Mode 2
| Mode 2
| D E F G Ad Bd C D
| D E F G A{{demiflat2}} B{{demiflat2}} C D
|-
|-
| Mode 3
| Mode 3
| E F G Ad Bd C D E
| E F G A{{demiflat2}} B{{demiflat2}} C D E
|-
|-
| Mode 4
| Mode 4
| F G Ad Bd C D E F
| F G A{{demiflat2}} B{{demiflat2}} C D E F
|-
|-
| Mode 5
| Mode 5
| G Ad Bd C D E F G
| G A{{demiflat2}} B{{demiflat2}} C D E F G
|-
|-
| Mode 6
| Mode 6
| Ad Bd C D E F G Ad
| A{{demiflat2}} B{{demiflat2}} C D E F G A{{demiflat2}}
|-
|-
| Mode 7
| Mode 7
| Bd C D E F G Ad Bd
| B{{demiflat2}} C D E F G A{{demiflat2}} B{{demiflat2}}
|}
|}


Line 177: Line 179:
|-
|-
| Mode 1
| Mode 1
| C D Eb F G A Bd C
| C D E♭ F G A B{{demiflat2}} C
|-
|-
| Mode 2
| Mode 2
| D Eb F G A Bd C D
| D E♭ F G A B{{demiflat2}} C D
|-
|-
| Mode 3
| Mode 3
| Eb F G A Bd C D Eb
| E♭ F G A B{{demiflat2}} C D E
|-
|-
| Mode 4
| Mode 4
| F G A Bd C D Eb F
| F G A B{{demiflat2}} C D E♭ F
|-
|-
| Mode 5
| Mode 5
| G A Bd C D Eb F G
| G A B{{demiflat2}} C D E♭ F G
|-
|-
| Mode 6
| Mode 6
| A Bd C D Eb F G A
| A B{{demiflat2}} C D E♭ F G A
|-
|-
| Mode 7
| Mode 7
| Bd C D Eb F G A Bd
| B{{demiflat2}} C D E♭ F G A B{{demiflat2}}
|}
|}


Line 204: Line 206:
|-
|-
| Mode 1
| Mode 1
| C D E F G A Bd C
| C D E F G A B{{demiflat2}} C
| C Dd E F G A B C
| C D{{demiflat2}} E F G A B C
|-
|-
| Mode 2
| Mode 2
| D E F G A Bd C D
| D E F G A B{{demiflat2}} C D
| Dd E F G A B C Dd
| D{{demiflat2}} E F G A B C D{{demiflat2}}
|-
|-
|Mode 3
|Mode 3
| E F G A Bd C D E
| E F G A B{{demiflat2}} C D E
| E F G A B C Dd E
| E F G A B C D{{demiflat2}} E
|-
|-
| Mode 4
| Mode 4
| F G A B C Dd E F
| F G A B C D{{demiflat2}} E F
| F G A Bd C D E F
| F G A B{{demiflat2}} C D E F
|-
|-
| Mode 5
| Mode 5
| G A Bd C D E F G
| G A B{{demiflat2}} C D E F G
| G A B C Dd E F G
| G A B C D{{demiflat2}} E F G
|-
|-
| Mode 6
| Mode 6
| A B C Dd E F G A
| A B C D{{demiflat2}} E F G A
| A B C Dd E F G A
| A B C D{{demiflat2}} E F G A
|-
|-
| Mode 7
| Mode 7
| Bd C D E F G A Bd
| B{{demiflat2}} C D E F G A B{{demiflat2}}
| B C Dd E F G A B
| B C D{{demiflat2}} E F G A B
|}
|}


Line 237: Line 239:


== Level 3 - Meantone by 3 alterations ==
== Level 3 - Meantone by 3 alterations ==
[[File:altered_mohajira_levels.PNG|alt=altered mohajira levels.PNG|altered mohajira levels.PNG]]
[[File:altered_mohajira_levels.PNG|alt=altered mohajira levels.PNG|altered mohajira levels.PNG]]


== Tuning the Turkish Major scale ==
== Tuning the Turkish Major scale ==
'''Turkish Major''' is a tempered max-variety 3 scale that is equivalent to a [[4L 3s|smitonic]] scale with one of its small steps diminished. This makes a Neapolitan Major scale which does not temper out 36/35. Not tempering 36/35 is actually quite useful, because it's the difference between 4:5:6 and 6:7:9 triads. This is important in a neutral third tone system because the smoothest neutral chord with a perfect fifth is 6:7:9:11. As a result,  results of tempering out [[81/80]] or [[64/63]] are not as bad, because the scale must detemper one if it tempers out the other. Strangely, the detempering of 36/35 is not evident due to the odd intervalic nature of the Turkish Major scale. Smitonic in a sense does the opposite of what Neapolitan Major does in common practice, exaggerating 36/35 to the point that 4:5:6 and 6:7:9 triads no longer have a recognizable 3/2, and the small step of Turkish Major becomes equal to the medium steps.
'''Turkish Major''' is a tempered max-variety 3 scale that is equivalent to a [[4L 3s|smitonic]] scale with one of its small steps diminished. This makes a Neapolitan Major scale which does not temper out 36/35. Not tempering 36/35 is actually quite useful, because it's the difference between 4:5:6 and 6:7:9 triads. This is important in a neutral third tone system because the smoothest neutral chord with a perfect fifth is 6:7:9:11. As a result,  results of tempering out [[81/80]] or [[64/63]] are not as bad, because the scale must detemper one if it tempers out the other. Strangely, the detempering of 36/35 is not evident due to the odd intervalic nature of the Turkish Major scale. Smitonic in a sense does the opposite of what Neapolitan Major does in common practice, exaggerating 36/35 to the point that 4:5:6 and 6:7:9 triads no longer have a recognizable 3/2, and the small step of Turkish Major becomes equal to the medium steps.
{| class="wikitable"
{| class="wikitable"
|+Common '''Turkish Major''' Tunings
|+ style="font-size: 105%;" | Common '''Turkish Major''' Tunings
|-
! rowspan="2" | Tuning
! rowspan="2" | Tuning
! rowspan="2" |L:m:s
! rowspan="2" | L:m:s
! rowspan="2" | Good Just Approximations
! rowspan="2" | Good Just Approximations
! rowspan="2" | other comments
! rowspan="2" | Other comments
! colspan="6" |Degrees
! colspan="6" | Degrees
|-
|-
! D
! D
Line 257: Line 260:
! Bd
! Bd
|-
|-
|
|  
|
|  
|
|  
|
|  
|(~)9/8
| (~)9/8
| 5/4
| 5/4
''81/64''
''81/64''
| (~)4/3
| (~)4/3
|(~)3/2
| (~)3/2
|~175/108
| ~175/108
''~44/27''
''~44/27''
| ~175/96
| ~175/96
''~11/6''
''~11/6''
|-
|-
|“Just”
| “Just”
| 1.649:1.256:1
| 1.649:1.256:1
''2.26:1.63:1''
''2.26:1.63:1''
| Just 5/4
| Just 5/4
''Just 9/8 and 4/3''
''Just 9/8 and 4/3''
|
|  
| 193.157
| 193.157
''203.91''
''203.91''
|386.314
| 386.314
''407.82''
''407.82''
|503.422
| 503.422
''498.045''
''498.045''
|696.578
| 696.578
''701.955''
''701.955''
| 843.646
| 843.646
''849.0225''
''849.0225''
| 1036.803
| 1036.803
''1052.9325''
''1052.9325''
|-
|-
|17edo
| 17edo
|3:2:1
| 3:2:1
|25/24
| 25/24
|
|  
|211.765
| 211.765
| 423.529
| 423.529
|494.118
| 494.118
| 705.882
| 705.882
| 847.059
| 847.059
|1058.8235
| 1058.8235
|-
|-
|21edo
| 21edo
| 4:2:1
| 4:2:1
|
|  
|
|  
| 228.571
| 228.571
|457.143
| 457.143
|514.286
| 514.286
|742.857
| 742.857
|857.143
| 857.143
| 1085.714
| 1085.714
|-
|-
|23edo
| 23edo
|4:3:1
| 4:3:1
| [[Neogothic]] thirds
| [[Neogothic]] thirds
|Mavila
| Mavila
|208.696
| 208.696
|417.381
| 417.381
|469.565
| 469.565
|678.261
| 678.261
|834.783
| 834.783
|1043.478
| 1043.478
|-
|-
|24edo
| 24edo
|4:3:2
| 4:3:2
| 4/3
| 4/3
| Mohajira
| Mohajira
|200
| 200
|400
| 400
| 500
| 500
|700
| 700
|850
| 850
|1050
| 1050
|-
|-
| 25edo
| 25edo
|5:2:1
| 5:2:1
|36/35
| 36/35
|Mavila
| Mavila
|240
| 240
|480
| 480
| 528
| 528
|768
| 768
|864
| 864
|1104
| 1104
|-
|-
| 27edo
| 27edo
|5:3:1
| 5:3:1
| 27/25
| 27/25
|
|  
|222.222
| 222.222
|444.444
| 444.444
|488.889
| 488.889
|711.111
| 711.111
| 844.444
| 844.444
|1066.667
| 1066.667
|-
|-
|28edo
| 28edo
|5:3:2
| 5:3:2
|
|  
|Antikythera
| Antikythera
|214.286
| 214.286
|428.571
| 428.571
|514.286
| 514.286
|728.571
| 728.571
|857.143
| 857.143
|1071.429
| 1071.429
|-
|-
|29edo
| 29edo
|5:4:1
| 5:4:1
6:2:1
6:2:1
|Neogothic thirds
| Neogothic thirds
|Score
| Score
|206.897
| 206.897
248.276
248.276
|413.793
| 413.793
496.552
496.552
|455.172
| 455.172
537.931
537.931
|662.069
| 662.069
786.206
786.206
| 827.586
| 827.586
868.9655
868.9655
|1034.483
| 1034.483
1117.241
1117.241
|-
|-
|30edo
| 30edo
|5:4:2
| 5:4:2
|13/8
| 13/8
|Mavila
| Mavila
|200
| 200
| 400
| 400
| 480
| 480
|680
| 680
|840
| 840
|1040
| 1040
|-
|-
| 31edo
| 31edo
| 5:4:3
| 5:4:3
6:3:1
6:3:1
|5/4
| 5/4
8/7
8/7
|Mohajira
| Mohajira
|193.548
| 193.548
232.258
232.258
|387.097
| 387.097
464.516
464.516
|503.226
| 503.226
|696.774
| 696.774
735.484
735.484
|851.613
| 851.613
|1045.161
| 1045.161
1083.871
1083.871
|-
|-
|32edo
| 32edo
|6:3:2
| 6:3:2
|
|  
|Mavila
| Mavila
|225
| 225
|450
| 450
|525
| 525
|750
| 750
|862.5
| 862.5
|1087.5
| 1087.5
|-
|-
|33edo
| 33edo
|6:4:1
| 6:4:1
7:2:1
7:2:1
|9/7
| 9/7
|
|  
|218.182
| 218.182
254.5455
254.5455
|436.364
| 436.364
509.091
509.091
|472.727
| 472.727
545.4545
545.4545
|690.909
| 690.909
763.636
763.636
|836.364
| 836.364
|1054.5455
| 1054.5455
1090.909
1090.909
|-
|-
|35edo
| 35edo
|6:4:3
| 6:4:3
6:5:1
6:5:1


7:3:1
7:3:1
|Neogothic thirds
| Neogothic thirds
|Has both “perfect“ fifths of 35edo
| Has both “perfect“ fifths of 35edo
|205.714
| 205.714
240
240
|411.429
| 411.429
480
480
|514.286
| 514.286
445.714
445.714
|720
| 720
651.429
651.429


754.286
754.286
|925.714
| 925.714
822.857
822.857


857.143
857.143
|1131.429
| 1131.429
1028.571
1028.571


1097.143
1097.143
|-
|-
|36edo
| 36edo
|6:5:2
| 6:5:2
7:3:2
7:3:2
|
|  
|Mavila
| Mavila
|200
| 200
233.333
233.333
|400
| 400
466.667
466.667
|466.667
| 466.667
533.333
533.333
|666.667
| 666.667
766.667
766.667
|833.333
| 833.333
866.667
866.667
|1033.333
| 1033.333
1100
1100
|-
|-
|37edo
| 37edo
|6:5:3
| 6:5:3
7:4:1
7:4:1


8:2:1
8:2:1
|13/10
| 13/10
|Has 5/4 and both “perfect” fifths of 37edo
| Has 5/4 and both “perfect” fifths of 37edo
|194.595
| 194.595
227.027
227.027


259.4595
259.4595
|389.189
| 389.189
454.054
454.054


518.919
518.919
|486.4865
| 486.4865
551.352
551.352
|681.081
| 681.081
713.5135
713.5135


810.811
810.811
|843.243
| 843.243
875.676
875.676
|1037.838
| 1037.838
1065.866
1065.866


1135.135
1135.135
|-
|-
|38edo
| 38edo
|6:5:4
| 6:5:4
7:4:2
7:4:2
|6/5
| 6/5
14/13
14/13
|
|  
|189.474
| 189.474
221.052
221.052
|378.947
| 378.947
442.105
442.105
|505.263
| 505.263
|694.737
| 694.737
726.316
726.316
|852.632
| 852.632
|1042.105
| 1042.105
1073.684
1073.684
|-
|-
|39edo
| 39edo
|7:4:3
| 7:4:3
7:5:1
7:5:1


8:3:1
8:3:1
|
|  
|Misses 39edo perfect fifth
| Misses 39edo perfect fifth
|215.385
| 215.385
246.154
246.154
|430.769
| 430.769
492.308
492.308
|523.077
| 523.077
461.5385
461.5385
|738.4615
| 738.4615
676.923
676.923


769.231
769.231
|861.5385
| 861.5385
830.769
830.769
|1076.923
| 1076.923
1046.154
1046.154


1107.692
1107.692
|-
|-
|40edo
| 40edo
|7:5:2
| 7:5:2
8:3:2
8:3:2
|13/8
| 13/8
|Has both “perfect“ fifths of 40edo
| Has both “perfect“ fifths of 40edo
|210
| 210
240
240
|420
| 420
480
480
|480
| 480
540
540
|690
| 690
780
780
|840
| 840
870
870
|1050
| 1050
1110
1110
|-
|-
|41edo
| 41edo
|7:5:3
| 7:5:3
7:6:1
7:6:1


8:4:1
8:4:1
|
|  
|
|  
|204.878
| 204.878
234.146
234.146
|409.756
| 409.756
468.296
468.296
|497.561
| 497.561
439.024
439.024
|702.439
| 702.439
643.902
643.902


731.707
731.707
|848.7805
| 848.7805
819.512
819.512


848.7805
848.7805
|1053.6585
| 1053.6585
1024.39
1024.39


1082.927
1082.927
|-
|-
|42edo
| 42edo
|7:5:4
| 7:5:4
7:6:2
7:6:2
|
|  
|Has both “perfect“ fifths of 42edo
| Has both “perfect“ fifths of 42edo
|200
| 200
|400
| 400
|514.286
| 514.286
457.143
457.143
|714.286
| 714.286
657.143
657.143
|857.143
| 857.143
828.571
828.571
|1057.143
| 1057.143
1028.571
1028.571
|-
|-
|43edo
| 43edo
|7:6:3
| 7:6:3
8:4:3
8:4:3


8:5:1
8:5:1
|16/15
| 16/15
|
|  
|195.349
| 195.349
223.256
223.256
|390.698
| 390.698
446.512
446.512
|502.326
| 502.326
530.233
530.233


474.419
474.419
|697.767
| 697.767
753.488
753.488
|865.116
| 865.116
837.209
837.209
|1060.465
| 1060.465
1088.372
1088.372
|-
|-
|44edo
| 44edo
|7:6:4
| 7:6:4
8:5:2
8:5:2
|
|  
|Has both “perfect“ fifths of 44edo
| Has both “perfect“ fifths of 44edo
|190.909
| 190.909
218.182
218.182
|381.818
| 381.818
436.364
436.364
|490.909
| 490.909
|681.818
| 681.818
709.091
709.091
|845.4545
| 845.4545
|1036.364
| 1036.364
1063.636
1063.636
|-
|-
|45edo
| 45edo
|7:6:5
| 7:6:5
8:5:3
8:5:3


8:6:1
8:6:1
|27/25
| 27/25
|Golden
| Golden
Has both “perfect“ fifths of 45edo
Has both “perfect“ fifths of 45edo
|186.667
| 186.667
213.333
213.333
|373.333
| 373.333
426.667
426.667
|506.667
| 506.667
453.333
453.333
|693.333
| 693.333
720
720


666.667
666.667
|853.333
| 853.333
826.667
826.667
|1040
| 1040
1066.666
1066.666
|-
|-
|46edo
| 46edo
|8:5:4
| 8:5:4
|
|  
|Misses fifth of 46edo
| Misses fifth of 46edo
|208.696
| 208.696
|417.381
| 417.381
|521.739
| 521.739
|730.435
| 730.435
|860.87
| 860.87
|1069.566
| 1069.566
|-
|-
|47edo
| 47edo
|8:6:3
| 8:6:3
8:7:1
8:7:1
|9/8
| 9/8
|Has both “perfect“ fifths of 47edo, all sizes of 47edo major third
| Has both “perfect“ fifths of 47edo, all sizes of 47edo major third
|204.255
| 204.255
|408.511
| 408.511
|485.106
| 485.106
434.043
434.043
|689.362
| 689.362
638.297
638.297
|842.553
| 842.553
817.021
817.021
|1046.8085
| 1046.8085
1021.277
1021.277
|-
|-
|48edo
| 48edo
|8:7:2
| 8:7:2
|
|  
|
|  
|200
| 200
|400
| 400
|450
| 450
|650
| 650
|825
| 825
|1025
| 1025
|-
|-
|49edo
| 49edo
|8:6:5
| 8:6:5
8:7:3
8:7:3
|
|  
|Has both “perfect“ fifths of 49edo
| Has both “perfect“ fifths of 49edo
|195.918
| 195.918
|391.837
| 391.837
|514.286
| 514.286
465.306
465.306
|710.204
| 710.204
661.2245
661.2245
|857.143
| 857.143
832.653
832.653
|1053.061
| 1053.061
1028.571
1028.571
|-
|-
|50edo
| 50edo
|8:7:4
| 8:7:4
|
|  
|Mavila, only has one 50edo interval
| Mavila, only has one 50edo interval
|192
| 192
|384
| 384
|480
| 480
|672
| 672
|840
| 840
|1032
| 1032
|-
|-
|51edo
| 51edo
|8:7:5
| 8:7:5
|
|  
|
|  
|188.235
| 188.235
|376.471
| 376.471
|494.118
| 494.118
|682.353
| 682.353
|847.059
| 847.059
|1035.294
| 1035.294
|-
|-
|52edo
| 52edo
|8:7:6
| 8:7:6
|
|  
|
|  
|184.615
| 184.615
|369.231
| 369.231
|507.692
| 507.692
|692.308
| 692.308
|853.846
| 853.846
|1038.4615
| 1038.4615
|}
|}


Line 772: Line 775:
{| class="wikitable"
{| class="wikitable"
|-
|-
|Mode 1
| Mode 1
|3 6 7 10 13 14 17 20 23
| 3 6 7 10 13 14 17 20 23
|4 8 9 13 17 18 22 26 30
| 4 8 9 13 17 18 22 26 30
|-
|-
|Mode 2
| Mode 2
|3 4 7 10 11 14 17 20 21
| 3 4 7 10 11 14 17 20 21
|4 5 9 13 14 18 22 26 27
| 4 5 9 13 14 18 22 26 27
|-
|-
|Mode 3
| Mode 3
|1 4 7 8 11 14 17 18 21
| 1 4 7 8 11 14 17 18 21
|1 5 9 10 14 18 22 23 27
| 1 5 9 10 14 18 22 23 27
|-
|-
|Mode 4
| Mode 4
|3 6 7 10 13 16 17 20 23
| 3 6 7 10 13 16 17 20 23
|4 8 9 13 17 21 22 26 30
| 4 8 9 13 17 21 22 26 30
|-
|-
|Mode 5
| Mode 5
|3 4 7 10 13 14 17 20 21
| 3 4 7 10 13 14 17 20 21
|4 5 9 13 17 18 22 26 27
| 4 5 9 13 17 18 22 26 27
|-
|-
|Mode 6
| Mode 6
|1 4 7 10 11 14 17 18 21
| 1 4 7 10 11 14 17 18 21
|1 5 9 13 14 18 22 23 27
| 1 5 9 13 14 18 22 23 27
|-
|-
|Mode 7
| Mode 7
|3 6 9 10 13 16 17 20 23
| 3 6 9 10 13 16 17 20 23
|4 8 12 13 17 21 22 26 30
| 4 8 12 13 17 21 22 26 30
|-
|-
|Mode 8
| Mode 8
|3 6 7 10 13 14 17 20 21
| 3 6 7 10 13 14 17 20 21
|4 8 9 13 17 18 22 26 27
| 4 8 9 13 17 18 22 26 27
|-
|-
|Mode 9
| Mode 9
|3 4 7 10 11 14 17 18 21
| 3 4 7 10 11 14 17 18 21
|4 5 9 13 14 18 22 23 27
| 4 5 9 13 14 18 22 23 27
|-
|-
|Mode 10
| Mode 10
|1 4 7 8 11 14 15 18 21
| 1 4 7 8 11 14 15 18 21
|1 4 9 10 14 18 19 23 27
| 1 4 9 10 14 18 19 23 27
|}
|}