62edo: Difference between revisions
m →Regular temperament properties: cleanup |
→Theory: Flat tendency Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
{{nowrap|62 {{=}} 2 × 31}} and the [[patent val]] of 62edo is a contorted [[31edo]] through the 11-limit, but it makes for a good tuning in the higher limits. In the 13-limit it tempers out [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]; in the 17-limit [[221/220]], [[273/272]], and [[289/288]]; in the 19-limit [[153/152]], [[171/170]], [[209/208]], [[286/285]], and [[361/360]]. Unlike 31edo, which has a sharp profile for primes [[13/1|13]], [[17/1|17]], [[19/1|19]] and [[23/1|23]], 62edo has a flat profile for these, as it removes the distinction of otonal and utonal [[superparticular]] pairs of the primes (e.g. 13/12 vs 14/13 for prime 13) by tempering out the corresponding [[square-particular]]s. Interestingly, the relative size differences of consecutive harmonics are well preserved for all first 24 harmonics, and 62edo is one of the few meantone edos that achieve this, great for those who seek higher-limit [[meantone]] harmony. | {{nowrap|62 {{=}} 2 × 31}} and the [[patent val]] of 62edo is a contorted [[31edo]] through the 11-limit, but it makes for a good tuning in the higher limits. In the 13-limit it tempers out [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]; in the 17-limit [[221/220]], [[273/272]], and [[289/288]]; in the 19-limit [[153/152]], [[171/170]], [[209/208]], [[286/285]], and [[361/360]]. Unlike 31edo, which has a sharp profile for primes [[13/1|13]], [[17/1|17]], [[19/1|19]] and [[23/1|23]], 62edo has a flat profile for these, as it removes the distinction of otonal and utonal [[superparticular]] pairs of the primes (e.g. 13/12 vs 14/13 for prime 13) by tempering out the corresponding [[square-particular]]s. This flat tendency extends to higher primes too, as the first prime harmonic that is tuned sharper than its [[5/4]] is its [[59/32]]. Interestingly, the relative size differences of consecutive harmonics are well preserved for all first 24 harmonics, and 62edo is one of the few meantone edos that achieve this, great for those who seek higher-limit [[meantone]] harmony. | ||
It provides the [[optimal patent val]] for [[31st-octave temperaments#Gallium|gallium]], [[Starling temperaments #Valentine|semivalentine]] and [[Meantone family #Hemimeantone|hemimeantone]] temperaments. | It provides the [[optimal patent val]] for [[31st-octave temperaments#Gallium|gallium]], [[Starling temperaments #Valentine|semivalentine]] and [[Meantone family #Hemimeantone|hemimeantone]] temperaments. |