Just intonation subgroup: Difference between revisions
m Sectioning |
Restructuring the article (subdivide into normalization, index, and generalization sections) |
||
Line 5: | Line 5: | ||
| ja = 純正律サブグループ | | ja = 純正律サブグループ | ||
}} | }} | ||
A '''just intonation subgroup''' is a | A '''just intonation subgroup''' is a {{w|Free abelian group|group}} generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Using subgroups implies a way to organize [[just intonation]] intervals such that they form a lattice. Therefore it is closely related to [[regular temperament theory]]. | ||
Just intonation subgroups can be described by listing their [[generator]]s with dots between them; the purpose of using dots is to flag the fact that it is a subgroup which is being referred to. This naming convention is employed below. | |||
There are three categories of subgroups: | There are three categories of subgroups: | ||
Line 17: | Line 19: | ||
A prime subgroup that does not omit any primes < ''p'' (e.g. 2.3.5, 2.3.5.7, 2.3.5.7.11, etc. but not 2.3.7 or 3.5.7) is simply called [[Harmonic limit|''p''-limit JI]]. It is customary of just intonation subgroups to refer only to prime subgroups that do omit such primes, as well as the other two categories. | A prime subgroup that does not omit any primes < ''p'' (e.g. 2.3.5, 2.3.5.7, 2.3.5.7.11, etc. but not 2.3.7 or 3.5.7) is simply called [[Harmonic limit|''p''-limit JI]]. It is customary of just intonation subgroups to refer only to prime subgroups that do omit such primes, as well as the other two categories. | ||
The following terminology has been proposed for streamlining pedagogy: Given a subgroup written as generated by a fixed (non-redundant) set: ''a''.''b''.''c''.[…].''d'', call any member of this set a '''basis element''', '''structural prime''', or '''formal prime'''.<ref>The meaning of "formal" this term is using is "of external form or structure, rather than nature or content", which is to say that a formal prime is not necessarily ''actually'' a prime, but we treat them as if they were. The original coiner of this term, | The following terminology has been proposed for streamlining pedagogy: Given a subgroup written as generated by a fixed (non-redundant) set: ''a''.''b''.''c''.[…].''d'', call any member of this set a '''basis element''', '''structural prime''', or '''formal prime'''.<ref>The meaning of "formal" this term is using is "of external form or structure, rather than nature or content", which is to say that a formal prime is not necessarily ''actually'' a prime, but we treat them as if they were. The original coiner of this term, [[Inthar]], has recommended its disuse, in favor of the mathematically accurate and generic "basis element", or possibly something else which indicates the co-uniqueness of the elements.</ref> For example, if the group is written 2.5/3.7/3, the basis elements are 2, 5/3 and 7/3. | ||
== Normalization == | |||
A canonical naming system for just intonation subgroups is to give a [[Normal lists #Normal interval list|normal interval list]] for the generators of the group, which will also show the [[Wikipedia: Rank of an abelian group|rank]] of the group by the number of generators in the list (the [[Hermite normal form]] should be used here, not the [[canonical form]], because in the case of subgroups, [[enfactoring]] is sometimes desirable, such as in the subgroup 2.9.7 which should not be reduced to 2.3.7 by subgroup canonicalization). Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale. | |||
== Index == | |||
{{See also| Wikipedia: Index of a subgroup }} | |||
Intuitively speaking, the '''index''' measures the relative size of the subgroup within another subgroup, which is usually the ''p''-limit. | |||
Subgroups in the strict sense come in two flavors: finite index and infinite index. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full [[3-limit]] (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full [[7-limit]] group, which is generated by 2, 3, 5 and 7. The index can be computed by taking the determinant of the [[subgroup basis matrix]], whose columns are the [[monzo]]s of the generators. | |||
== Generalization == | |||
Non-JI intervals can also be used as basis elements, when the subgroup in question contains non-JI intervals. For example, 2.sqrt(3/2) (sometimes written 2.2ed3/2) is the group generated by 2/1 and 350.978 cents, the square root of 3/2 (a neutral third which is exactly one half of 3/2). This is closely related to the [[3L 4s]] mos tuning with neutral third generator sqrt(3/2). | Non-JI intervals can also be used as basis elements, when the subgroup in question contains non-JI intervals. For example, 2.sqrt(3/2) (sometimes written 2.2ed3/2) is the group generated by 2/1 and 350.978 cents, the square root of 3/2 (a neutral third which is exactly one half of 3/2). This is closely related to the [[3L 4s]] mos tuning with neutral third generator sqrt(3/2). | ||
== List of selected subgroups == | == List of selected subgroups == |