Ragismic microtemperaments: Difference between revisions
Update links |
Rework intro; normalize mappings and generators |
||
Line 1: | Line 1: | ||
This is a collection of [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the ragisma, [[4375/4374]] = {{monzo| -1 -7 4 1 }}. The ragisma is the smallest [[7-limit]] [[superparticular ratio]]. | |||
Since (10/9)<sup>4</sup> = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)<sup>2</sup>, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal. | |||
Microtemperaments considered below are ennealimmal, supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, orga, chlorine, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are: | |||
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]] | * ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]] | ||
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]] | * ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]] | ||
Line 24: | Line 26: | ||
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]] | * ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]] | ||
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]] | * ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]] | ||
== Ennealimmal == | == Ennealimmal == | ||
Line 1,506: | Line 1,505: | ||
[[Comma list]]: 4375/4374, {{monzo| -51 8 2 12 }} | [[Comma list]]: 4375/4374, {{monzo| -51 8 2 12 }} | ||
{{Mapping|legend=1| 46 | {{Mapping|legend=1| 46 0 -39 202 | 0 1 2 -1 }} | ||
: mapping generators: ~83349/81920, ~3 | : mapping generators: ~83349/81920, ~3 | ||
Line 1,523: | Line 1,522: | ||
Comma list: 3025/3024, 4375/4374, 134775333/134217728 | Comma list: 3025/3024, 4375/4374, 134775333/134217728 | ||
Mapping: {{mapping| | Mapping: {{mapping| 46 0 -39 202 232 | 0 1 2 -1 -1 }} | ||
Optimal tuning (POTE): ~8192/8085 = 1\46, ~3/2 = 701.5951 | Optimal tuning (POTE): ~8192/8085 = 1\46, ~3/2 = 701.5951 | ||
Line 1,536: | Line 1,535: | ||
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364 | Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364 | ||
Mapping: {{mapping| 46 | Mapping: {{mapping| 46 0 -39 202 232 316 | 0 1 2 -1 -1 -2 }} | ||
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6419 | Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6419 | ||
Line 1,549: | Line 1,548: | ||
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | ||
Mapping: {{mapping| 46 | Mapping: {{mapping| 46 0 -39 202 232 316 188 | 0 1 2 -1 -1 -2 0 }} | ||
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6425 | Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6425 | ||
Line 1,725: | Line 1,724: | ||
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224 | Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224 | ||
Mapping: {{mapping| 16 | Mapping: {{mapping| 16 2 6 6 32 67 | 0 3 4 5 3 -1 }} | ||
: mapping generators: ~448/429, ~7/5 | : mapping generators: ~448/429, ~7/5 | ||
Line 1,740: | Line 1,739: | ||
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224 | Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224 | ||
Mapping: {{mapping| 16 | Mapping: {{mapping| 16 2 6 6 32 67 81 | 0 3 4 5 3 -1 -2 }} | ||
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.932 | Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.932 | ||
Line 1,753: | Line 1,752: | ||
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444 | Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444 | ||
Mapping: {{mapping| 16 | Mapping: {{mapping| 16 2 6 6 32 67 81 68 | 0 -3 -4 -5 -3 1 2 0 }} | ||
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.896 | Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.896 | ||
Line 1,781: | Line 1,780: | ||
=== 7-limit === | === 7-limit === | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 3136/3125, 4375/4374 | [[Comma list]]: 3136/3125, 4375/4374 | ||
Line 2,164: | Line 2,163: | ||
[[Comma list]]: 4375/4374, 83349/81920 | [[Comma list]]: 4375/4374, 83349/81920 | ||
{{Mapping|legend=1| 13 | {{Mapping|legend=1| 13 0 -11 57 | 0 1 2 -1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~256/245 = 1\13, ~3/2 = 699.1410 | [[Optimal tuning]] ([[POTE]]): ~256/245 = 1\13, ~3/2 = 699.1410 | ||
Line 2,177: | Line 2,176: | ||
Comma list: 245/242, 385/384, 4375/4374 | Comma list: 245/242, 385/384, 4375/4374 | ||
Mapping: {{mapping| 13 | Mapping: {{mapping| 13 0 -11 57 45 | 0 1 2 -1 0 }} | ||
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.6179 | Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.6179 | ||
Line 2,190: | Line 2,189: | ||
Comma list: 169/168, 245/242, 325/324, 385/384 | Comma list: 169/168, 245/242, 325/324, 385/384 | ||
Mapping: {{mapping| 13 | Mapping: {{mapping| 13 0 -11 57 45 48 | 0 1 2 -1 0 0 }} | ||
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.2969 | Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.2969 |