Breedsmic temperaments: Difference between revisions
Update keys |
Normalize mappings and generators |
||
Line 28: | Line 28: | ||
Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It may be called the 41 & 58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}. | Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It may be called the 41 & 58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}. | ||
By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. | By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 35: | Line 35: | ||
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }} | {{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }} | ||
: mapping generators: ~2, ~49/40 | |||
{{Multival|legend=1| 2 25 13 35 15 -40 }} | {{Multival|legend=1| 2 25 13 35 15 -40 }} | ||
Line 43: | Line 45: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }} | ||
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }} | : {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }} | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5 | ||
[[Algebraic generator]]: (2 + sqrt(2))/2 | [[Algebraic generator]]: (2 + sqrt(2))/2 | ||
Line 83: | Line 85: | ||
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }} | Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }} | ||
: mapping generators: ~99/70, ~49/40 | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~49/40 = 351.505 | Optimal tuning (POTE): ~99/70 = 1\2, ~49/40 = 351.505 | ||
Line 111: | Line 115: | ||
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }} | Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }} | ||
: mapping generators: ~2, ~243/220 | |||
Optimal tuning (POTE): ~2 = 1\1, ~243/220 = 175.7378 | Optimal tuning (POTE): ~2 = 1\1, ~243/220 = 175.7378 | ||
Line 134: | Line 140: | ||
{{Main| Tertiaseptal }} | {{Main| Tertiaseptal }} | ||
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 & 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note | Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 & 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 141: | Line 147: | ||
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }} | {{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }} | ||
: mapping generators: ~2, ~256/245 | |||
{{Multival|legend=1| 22 -5 3 -59 -57 21 }} | {{Multival|legend=1| 22 -5 3 -59 -57 21 }} | ||
Line 351: | Line 359: | ||
Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }} | Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }} | ||
: mapping generators: ~2, ~45/44 | |||
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596 | Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596 | ||
Line 390: | Line 400: | ||
Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }} | Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }} | ||
: mapping generators: ~99/70, ~256/245 | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193 | Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193 | ||
Line 407: | Line 419: | ||
{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }} | {{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }} | ||
: mapping generators: ~2, ~875/512 | |||
{{Multival|legend=1| 38 -3 8 -93 -94 27 }} | {{Multival|legend=1| 38 -3 8 -93 -94 27 }} | ||
Line 445: | Line 459: | ||
{{See also| Quintosec family #Decoid }} | {{See also| Quintosec family #Decoid }} | ||
Decoid tempers out 2401/2400 and 67108864/66976875, as well as the [[ | Decoid tempers out 2401/2400 and 67108864/66976875, as well as the [[linus comma]], {{monzo| 11 -10 -10 10 }}. Either 8/7 or 16/15 can be used as its generator. It may be described as the 130 & 270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the [[quintosec]] temperament. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 497: | Line 511: | ||
{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }} | {{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }} | ||
: mapping generators: ~2, ~189/160 | |||
{{Multival|legend=1| 6 41 22 51 18 -64 }} | {{Multival|legend=1| 6 41 22 51 18 -64 }} | ||
Line 533: | Line 549: | ||
== Emmthird == | == Emmthird == | ||
The generator for emmthird | The generator for emmthird is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 539: | Line 555: | ||
[[Comma list]]: 2401/2400, 14348907/14336000 | [[Comma list]]: 2401/2400, 14348907/14336000 | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 11 42 25 | 0 -14 -59 -33 }} | ||
{{Multival|legend=1|14 59 33 61 13 - | : mapping generators: ~2, ~2187/1372 | ||
{{Multival|legend=1| 14 59 33 61 13 -8 9 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988 | ||
Line 554: | Line 572: | ||
Comma list: 243/242, 441/440, 1792000/1771561 | Comma list: 243/242, 441/440, 1792000/1771561 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 11 42 25 27 | 0 -14 -59 -33 -35 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991 | Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991 | ||
Line 567: | Line 585: | ||
Comma list: 243/242, 364/363, 441/440, 2200/2197 | Comma list: 243/242, 364/363, 441/440, 2200/2197 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 11 42 25 27 38 | 0 -14 -59 -33 -35 -51 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989 | Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989 | ||
Line 595: | Line 613: | ||
[[Comma list]]: 2401/2400, 1959552/1953125 | [[Comma list]]: 2401/2400, 1959552/1953125 | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 27 24 20 | 0 -34 -29 -23 }} | ||
: mapping generators: ~2, ~42/25 | |||
{{Multival|legend=1| 34 29 23 -33 -59 -28 }} | {{Multival|legend=1| 34 29 23 -33 -59 -28 }} | ||
Line 601: | Line 621: | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997 | ||
{{Optimal ET sequence|legend=1| | {{Optimal ET sequence|legend=1| 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }} | ||
[[Badness]]: 0.037322 | [[Badness]]: 0.037322 | ||
Line 612: | Line 632: | ||
[[Comma list]]: 2401/2400, 68359375/68024448 | [[Comma list]]: 2401/2400, 68359375/68024448 | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 29 33 25 | 0 -42 -47 -34 }} | ||
: mapping generators: ~2, ~6125/3888 | |||
{{Multival|legend=1| 42 47 34 -23 -64 -53 }} | {{Multival|legend=1| 42 47 34 -23 -64 -53 }} | ||
Line 627: | Line 649: | ||
Comma list: 2401/2400, 3025/3024, 4000/3993 | Comma list: 2401/2400, 3025/3024, 4000/3993 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 29 33 25 25 | 0 -42 -47 -34 -33 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718 | Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718 | ||
{{Optimal ET sequence|legend=1| 72, 167, 239, 311 | {{Optimal ET sequence|legend=1| 72, 167, 239, 311 }} | ||
Badness: 0.022926 | Badness: 0.022926 | ||
Line 640: | Line 662: | ||
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400 | Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 29 33 25 25 99 | 0 -42 -47 -34 -33 -146 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716 | Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716 | ||
{{Optimal ET sequence|legend=1| 72, 311, 694, 1005c | {{Optimal ET sequence|legend=1| 72, 239f, 311, 694, 1005c }} | ||
Badness: 0.020888 | Badness: 0.020888 | ||
Line 656: | Line 678: | ||
{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }} | {{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }} | ||
: mapping generators: ~2, ~49/40 | |||
{{Multival|legend=1| 2 -57 -28 -95 -50 95 }} | {{Multival|legend=1| 2 -57 -28 -95 -50 95 }} | ||
Line 661: | Line 685: | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113 | ||
{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201 | {{Optimal ET sequence|legend=1| 41, …, 188, 229, 270, 1121, 1391, 1661, 1931, 2201 }} | ||
[[Badness]]: 0.041878 | [[Badness]]: 0.041878 | ||
Line 674: | Line 698: | ||
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115 | Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115 | ||
{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 581, 851, 1121, 1972 | {{Optimal ET sequence|legend=1| 41, 188, 229, 270, 581, 851, 1121, 1972 }} | ||
Badness: 0.019461 | Badness: 0.019461 | ||
Line 687: | Line 711: | ||
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117 | Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117 | ||
{{Optimal ET sequence|legend=1| 41, 229, 270, 581, 851, 2283b | {{Optimal ET sequence|legend=1| 41, 229, 270, 581, 851, 2283b }} | ||
Badness: 0.013830 | Badness: 0.013830 | ||
Line 700: | Line 724: | ||
[[Comma list]]: 2401/2400, 2152828125/2147483648 | [[Comma list]]: 2401/2400, 2152828125/2147483648 | ||
{{Mapping|legend=1| 1 - | {{Mapping|legend=1| 1 25 -31 -8 | 0 -26 37 12 }} | ||
: mapping generators: ~2, ~28/15 | |||
{{Multival|legend=1| 26 -37 -12 -119 -92 76 }} | {{Multival|legend=1| 26 -37 -12 -119 -92 76 }} | ||
Line 717: | Line 743: | ||
Comma list: 243/242, 441/440, 939524096/935859375 | Comma list: 243/242, 441/440, 939524096/935859375 | ||
Mapping: {{mapping| 1 - | Mapping: {{mapping| 1 25 -31 -8 62 | 0 -26 37 12 -65 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279 | Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279 | ||
Line 730: | Line 756: | ||
Comma list: 243/242, 441/440, 2200/2197, 3584/3575 | Comma list: 243/242, 441/440, 2200/2197, 3584/3575 | ||
Mapping: {{mapping| 1 -1 | Mapping: {{mapping| 1 25 -31 -8 62 1 | 0 -26 37 12 -65 3 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281 | Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281 | ||
Line 743: | Line 769: | ||
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575 | Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575 | ||
Mapping: {{mapping| 1 -1 | Mapping: {{mapping| 1 25 -31 -8 62 1 23 | 0 -26 37 12 -65 3 -21 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281 | Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281 | ||
Line 759: | Line 785: | ||
{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }} | {{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }} | ||
: mapping generators: ~2, ~1296/875 | |||
{{Multival|legend=1| 52 56 41 -32 -81 -62 }} | {{Multival|legend=1| 52 56 41 -32 -81 -62 }} | ||
Line 776: | Line 804: | ||
{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }} | {{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }} | ||
: mapping generators: ~2, ~57344/46875 | |||
{{Multival|legend=1| 60 -8 11 -152 -151 48 }} | {{Multival|legend=1| 60 -8 11 -152 -151 48 }} | ||
Line 781: | Line 811: | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301 | ||
{{Optimal ET sequence|legend=1| 31, 348, 379, 410, 441, 1354, 1795, 2236 }} | {{Optimal ET sequence|legend=1| 31, …, 348, 379, 410, 441, 1354, 1795, 2236 }} | ||
[[Badness]]: 0.045792 | [[Badness]]: 0.045792 | ||
Line 793: | Line 823: | ||
{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }} | {{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }} | ||
: mapping generators: ~2, ~2800/2187 | |||
{{Multival|legend=1| 32 86 51 62 -9 -123 }} | {{Multival|legend=1| 32 86 51 62 -9 -123 }} | ||
Line 798: | Line 830: | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066 | ||
{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696 | {{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696 }} | ||
[[Badness]]: 0.028307 | [[Badness]]: 0.028307 | ||
Line 808: | Line 840: | ||
{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }} | {{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }} | ||
: mapping generators: ~2, ~8/7 | |||
{{Multival|legend=1| 18 -7 1 -53 -49 22 }} | {{Multival|legend=1| 18 -7 1 -53 -49 22 }} | ||
Line 849: | Line 883: | ||
{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }} | {{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }} | ||
: mapping generators: ~2, ~125/96 | |||
{{Multival|legend=1| 46 15 19 -83 -99 2 }} | {{Multival|legend=1| 46 15 19 -83 -99 2 }} | ||
Line 854: | Line 890: | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310 | ||
{{Optimal ET sequence|legend=1| 37, 103, 140, 243, 383, 1009cd, 1392ccd }} | {{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243, 383, 1009cd, 1392ccd }} | ||
Badness: 0.100511 | Badness: 0.100511 | ||
Line 867: | Line 903: | ||
Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318 | Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318 | ||
{{Optimal ET sequence|legend=1| 37, 103, 140, 243e }} | {{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243e }} | ||
Badness: 0.056514 | Badness: 0.056514 | ||
Line 880: | Line 916: | ||
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316 | Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316 | ||
{{Optimal ET sequence|legend=1| 37, 103, 140, 243e }} | {{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243e }} | ||
Badness: 0.027429 | Badness: 0.027429 | ||
== Mintone == | == Mintone == | ||
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo|-3 11 -5 -1}} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 & 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice. | In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo| -3 11 -5 -1 }} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 & 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 892: | Line 928: | ||
{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }} | {{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }} | ||
: mapping generators: ~2, ~10/9 | |||
{{Multival|legend=1| 22 43 27 17 -19 -58 }} | {{Multival|legend=1| 22 43 27 17 -19 -58 }} | ||
Line 948: | Line 986: | ||
{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }} | {{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }} | ||
: mapping generators: ~2, ~250/189 | |||
{{Multival|legend=1| 28 36 25 -8 -39 -43 }} | {{Multival|legend=1| 28 36 25 -8 -39 -43 }} | ||
Line 988: | Line 1,028: | ||
[[Comma list]]: 2401/2400, 390625/387072 | [[Comma list]]: 2401/2400, 390625/387072 | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 17 9 10 | 0 -30 -13 -14 }} | ||
: mappping generators: ~2, ~10/7 | |||
{{Multival|legend=1| 30 13 14 -49 -62 -4 }} | {{Multival|legend=1| 30 13 14 -49 -62 -4 }} | ||
Line 1,003: | Line 1,045: | ||
Comma list: 385/384, 1375/1372, 4000/3993 | Comma list: 385/384, 1375/1372, 4000/3993 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 17 9 10 5 | 0 -30 -13 -14 -3 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387 | Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387 | ||
Line 1,016: | Line 1,058: | ||
Comma list: 169/168, 364/363, 385/384, 625/624 | Comma list: 169/168, 364/363, 385/384, 625/624 | ||
Mapping: {{mapping| 1 | Mapping: {{mapping| 1 17 9 10 5 15 | 0 -30 -13 -14 -3 -22 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387 | Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387 | ||
Line 1,032: | Line 1,074: | ||
{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }} | {{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }} | ||
: mapping generators: ~2, ~49/40 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603 |