Breedsmic temperaments: Difference between revisions

Update keys
Normalize mappings and generators
Line 28: Line 28:
Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It may be called the 41 &amp; 58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}.
Hemififths tempers out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It may be called the 41 &amp; 58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}.


By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. [[99edo]] is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.
By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 35: Line 35:


{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }}
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }}
: mapping generators: ~2, ~49/40


{{Multival|legend=1| 2 25 13 35 15 -40 }}
{{Multival|legend=1| 2 25 13 35 15 -40 }}
Line 43: Line 45:
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }}
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }}
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }}
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5


[[Algebraic generator]]: (2 + sqrt(2))/2
[[Algebraic generator]]: (2 + sqrt(2))/2
Line 83: Line 85:


Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }}
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }}
: mapping generators: ~99/70, ~49/40


Optimal tuning (POTE): ~99/70 = 1\2, ~49/40 = 351.505
Optimal tuning (POTE): ~99/70 = 1\2, ~49/40 = 351.505
Line 111: Line 115:


Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }}
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }}
: mapping generators: ~2, ~243/220


Optimal tuning (POTE): ~2 = 1\1, ~243/220 = 175.7378
Optimal tuning (POTE): ~2 = 1\1, ~243/220 = 175.7378
Line 134: Line 140:
{{Main| Tertiaseptal }}
{{Main| Tertiaseptal }}


Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 &amp; 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well.
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 &amp; 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 141: Line 147:


{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }}
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }}
: mapping generators: ~2, ~256/245


{{Multival|legend=1| 22 -5 3 -59 -57 21 }}
{{Multival|legend=1| 22 -5 3 -59 -57 21 }}
Line 351: Line 359:


Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }}
Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }}
: mapping generators: ~2, ~45/44


Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596
Line 390: Line 400:


Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }}
Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }}
: mapping generators: ~99/70, ~256/245


Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193
Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193
Line 407: Line 419:


{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }}
{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }}
: mapping generators: ~2, ~875/512


{{Multival|legend=1| 38 -3 8 -93 -94 27 }}
{{Multival|legend=1| 38 -3 8 -93 -94 27 }}
Line 445: Line 459:
{{See also| Quintosec family #Decoid }}
{{See also| Quintosec family #Decoid }}


Decoid tempers out 2401/2400 and 67108864/66976875, as well as the [[15/14 equal-step tuning|linus comma]], {{monzo| 11 -10 -10 10 }}. Either 8/7 or 16/15 can be used its generator. It may be described as the 130 &amp; 270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the [[quintosec]] temperament.
Decoid tempers out 2401/2400 and 67108864/66976875, as well as the [[linus comma]], {{monzo| 11 -10 -10 10 }}. Either 8/7 or 16/15 can be used as its generator. It may be described as the 130 &amp; 270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the [[quintosec]] temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 497: Line 511:


{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }}
{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }}
: mapping generators: ~2, ~189/160


{{Multival|legend=1| 6 41 22 51 18 -64 }}
{{Multival|legend=1| 6 41 22 51 18 -64 }}
Line 533: Line 549:


== Emmthird ==
== Emmthird ==
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.
The generator for emmthird is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 539: Line 555:
[[Comma list]]: 2401/2400, 14348907/14336000
[[Comma list]]: 2401/2400, 14348907/14336000


{{Mapping|legend=1| 1 -3 -17 -8 | 0 14 59 33 }}
{{Mapping|legend=1| 1 11 42 25 | 0 -14 -59 -33 }}


{{Multival|legend=1|14 59 33 61 13 -89}}
: mapping generators: ~2, ~2187/1372
 
{{Multival|legend=1| 14 59 33 61 13 -8 9 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988
Line 554: Line 572:
Comma list: 243/242, 441/440, 1792000/1771561
Comma list: 243/242, 441/440, 1792000/1771561


Mapping: {{mapping| 1 -3 -17 -8 -8 | 0 14 59 33 35 }}
Mapping: {{mapping| 1 11 42 25 27 | 0 -14 -59 -33 -35 }}


Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991
Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991
Line 567: Line 585:
Comma list: 243/242, 364/363, 441/440, 2200/2197
Comma list: 243/242, 364/363, 441/440, 2200/2197


Mapping: {{mapping| 1 -3 -17 -8 -8 -13 | 0 14 59 33 35 51 }}
Mapping: {{mapping| 1 11 42 25 27 38 | 0 -14 -59 -33 -35 -51 }}


Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989
Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989
Line 595: Line 613:
[[Comma list]]: 2401/2400, 1959552/1953125
[[Comma list]]: 2401/2400, 1959552/1953125


{{Mapping|legend=1| 1 -7 -5 -3 | 0 34 29 23 }}
{{Mapping|legend=1| 1 27 24 20 | 0 -34 -29 -23 }}
 
: mapping generators: ~2, ~42/25


{{Multival|legend=1| 34 29 23 -33 -59 -28 }}
{{Multival|legend=1| 34 29 23 -33 -59 -28 }}
Line 601: Line 621:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997


{{Optimal ET sequence|legend=1| 95, 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}
{{Optimal ET sequence|legend=1| 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}


[[Badness]]: 0.037322
[[Badness]]: 0.037322
Line 612: Line 632:
[[Comma list]]: 2401/2400, 68359375/68024448
[[Comma list]]: 2401/2400, 68359375/68024448


{{Mapping|legend=1| 1 -13 -14 -9 | 0 42 47 34 }}
{{Mapping|legend=1| 1 29 33 25 | 0 -42 -47 -34 }}
 
: mapping generators: ~2, ~6125/3888


{{Multival|legend=1| 42 47 34 -23 -64 -53 }}
{{Multival|legend=1| 42 47 34 -23 -64 -53 }}
Line 627: Line 649:
Comma list: 2401/2400, 3025/3024, 4000/3993
Comma list: 2401/2400, 3025/3024, 4000/3993


Mapping: {{mapping| 1 -13 -14 -9 -8 | 0 42 47 34 33 }}
Mapping: {{mapping| 1 29 33 25 25 | 0 -42 -47 -34 -33 }}


Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718


{{Optimal ET sequence|legend=1| 72, 167, 239, 311, 1316c }}
{{Optimal ET sequence|legend=1| 72, 167, 239, 311 }}


Badness: 0.022926
Badness: 0.022926
Line 640: Line 662:
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400


Mapping: {{mapping| 1 -13 -14 -9 -9 -47 | 0 42 47 34 33 146 }}
Mapping: {{mapping| 1 29 33 25 25 99 | 0 -42 -47 -34 -33 -146 }}


Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716


{{Optimal ET sequence|legend=1| 72, 311, 694, 1005c, 1699cd }}
{{Optimal ET sequence|legend=1| 72, 239f, 311, 694, 1005c }}


Badness: 0.020888
Badness: 0.020888
Line 656: Line 678:


{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }}
{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }}
: mapping generators: ~2, ~49/40


{{Multival|legend=1| 2 -57 -28 -95 -50 95 }}
{{Multival|legend=1| 2 -57 -28 -95 -50 95 }}
Line 661: Line 685:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113


{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bbcc }}
{{Optimal ET sequence|legend=1| 41, …, 188, 229, 270, 1121, 1391, 1661, 1931, 2201 }}


[[Badness]]: 0.041878
[[Badness]]: 0.041878
Line 674: Line 698:
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115


{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b }}
{{Optimal ET sequence|legend=1| 41, 188, 229, 270, 581, 851, 1121, 1972 }}


Badness: 0.019461
Badness: 0.019461
Line 687: Line 711:
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117


{{Optimal ET sequence|legend=1| 41, 229, 270, 581, 851, 2283b, 3134b }}
{{Optimal ET sequence|legend=1| 41, 229, 270, 581, 851, 2283b }}


Badness: 0.013830
Badness: 0.013830
Line 700: Line 724:
[[Comma list]]: 2401/2400, 2152828125/2147483648
[[Comma list]]: 2401/2400, 2152828125/2147483648


{{Mapping|legend=1| 1 -1 6 4 | 0 26 -37 -12 }}
{{Mapping|legend=1| 1 25 -31 -8 | 0 -26 37 12 }}
 
: mapping generators: ~2, ~28/15


{{Multival|legend=1| 26 -37 -12 -119 -92 76 }}
{{Multival|legend=1| 26 -37 -12 -119 -92 76 }}
Line 717: Line 743:
Comma list: 243/242, 441/440, 939524096/935859375
Comma list: 243/242, 441/440, 939524096/935859375


Mapping: {{mapping| 1 -1 6 4 -3 | 0 26 -37 -12 65 }}
Mapping: {{mapping| 1 25 -31 -8 62 | 0 -26 37 12 -65 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279
Line 730: Line 756:
Comma list: 243/242, 441/440, 2200/2197, 3584/3575
Comma list: 243/242, 441/440, 2200/2197, 3584/3575


Mapping: {{mapping| 1 -1 6 4 -3 4 | 0 26 -37 -12 65 -3 }}
Mapping: {{mapping| 1 25 -31 -8 62 1 | 0 -26 37 12 -65 3 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281
Line 743: Line 769:
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575


Mapping: {{mapping| 1 -1 6 4 -3 4 2 | 0 26 -37 -12 65 -3 21 }}
Mapping: {{mapping| 1 25 -31 -8 62 1 23 | 0 -26 37 12 -65 3 -21 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281
Line 759: Line 785:


{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }}
{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }}
: mapping generators: ~2, ~1296/875


{{Multival|legend=1| 52 56 41 -32 -81 -62 }}
{{Multival|legend=1| 52 56 41 -32 -81 -62 }}
Line 776: Line 804:


{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }}
{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }}
: mapping generators: ~2, ~57344/46875


{{Multival|legend=1| 60 -8 11 -152 -151 48 }}
{{Multival|legend=1| 60 -8 11 -152 -151 48 }}
Line 781: Line 811:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301


{{Optimal ET sequence|legend=1| 31, 348, 379, 410, 441, 1354, 1795, 2236 }}
{{Optimal ET sequence|legend=1| 31, …, 348, 379, 410, 441, 1354, 1795, 2236 }}


[[Badness]]: 0.045792
[[Badness]]: 0.045792
Line 793: Line 823:


{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }}
{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }}
: mapping generators: ~2, ~2800/2187


{{Multival|legend=1| 32 86 51 62 -9 -123 }}
{{Multival|legend=1| 32 86 51 62 -9 -123 }}
Line 798: Line 830:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066


{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696, 6955dd }}
{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696 }}


[[Badness]]: 0.028307
[[Badness]]: 0.028307
Line 808: Line 840:


{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }}
{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }}
: mapping generators: ~2, ~8/7


{{Multival|legend=1| 18 -7 1 -53 -49 22 }}
{{Multival|legend=1| 18 -7 1 -53 -49 22 }}
Line 849: Line 883:


{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }}
{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }}
: mapping generators: ~2, ~125/96


{{Multival|legend=1| 46 15 19 -83 -99 2 }}
{{Multival|legend=1| 46 15 19 -83 -99 2 }}
Line 854: Line 890:
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310


{{Optimal ET sequence|legend=1| 37, 103, 140, 243, 383, 1009cd, 1392ccd }}
{{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243, 383, 1009cd, 1392ccd }}


Badness: 0.100511
Badness: 0.100511
Line 867: Line 903:
Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318
Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318


{{Optimal ET sequence|legend=1| 37, 103, 140, 243e }}
{{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243e }}


Badness: 0.056514
Badness: 0.056514
Line 880: Line 916:
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316


{{Optimal ET sequence|legend=1| 37, 103, 140, 243e }}
{{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243e }}


Badness: 0.027429
Badness: 0.027429


== Mintone ==
== Mintone ==
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo|-3 11 -5 -1}} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 &amp; 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo| -3 11 -5 -1 }} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 &amp; 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 892: Line 928:


{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }}
{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }}
: mapping generators: ~2, ~10/9


{{Multival|legend=1| 22 43 27 17 -19 -58 }}
{{Multival|legend=1| 22 43 27 17 -19 -58 }}
Line 948: Line 986:


{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }}
{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }}
: mapping generators: ~2, ~250/189


{{Multival|legend=1| 28 36 25 -8 -39 -43 }}
{{Multival|legend=1| 28 36 25 -8 -39 -43 }}
Line 988: Line 1,028:
[[Comma list]]: 2401/2400, 390625/387072
[[Comma list]]: 2401/2400, 390625/387072


{{Mapping|legend=1| 1 -13 -4 -4 | 0 30 13 14 }}
{{Mapping|legend=1| 1 17 9 10 | 0 -30 -13 -14 }}
 
: mappping generators: ~2, ~10/7


{{Multival|legend=1| 30 13 14 -49 -62 -4 }}
{{Multival|legend=1| 30 13 14 -49 -62 -4 }}
Line 1,003: Line 1,045:
Comma list: 385/384, 1375/1372, 4000/3993
Comma list: 385/384, 1375/1372, 4000/3993


Mapping: {{mapping| 1 -13 -4 -4 2 | 0 30 13 14 3 }}
Mapping: {{mapping| 1 17 9 10 5 | 0 -30 -13 -14 -3 }}


Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387
Line 1,016: Line 1,058:
Comma list: 169/168, 364/363, 385/384, 625/624
Comma list: 169/168, 364/363, 385/384, 625/624


Mapping: {{mapping| 1 -13 -4 -4 2 -7 | 0 30 13 14 3 22 }}
Mapping: {{mapping| 1 17 9 10 5 15 | 0 -30 -13 -14 -3 -22 }}


Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387
Line 1,032: Line 1,074:


{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }}
{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }}
: mapping generators: ~2, ~49/40


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603