Starling temperaments: Difference between revisions

Cmloegcmluin (talk | contribs)
"optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence
Update keys
Line 2: Line 2:


Temperaments discussed in families and clans are:
Temperaments discussed in families and clans are:
* ''[[Pater]]'', {16/15, 126/125} → [[Father family #Pater|Father family]]
* ''[[Pater]]'' (+16/15) → [[Father family #Pater|Father family]]
* ''[[Flat]]'', {21/20, 25/24} → [[Dicot family #Flat|Dicot family]]
* ''[[Flat]]'' (+21/20) → [[Dicot family #Flat|Dicot family]]
* ''[[Opossum]]'', {28/27, 126/125} → [[Trienstonic clan #Opossum|Trienstonic clan]]
* ''[[Opossum]]'' (+28/27) → [[Trienstonic clan #Opossum|Trienstonic clan]]
* ''[[Diminished]]'', {36/35, 50/49} → [[Dimipent family #Diminished|Dimipent family]] / [[Jubilismic clan #Diminished|jubilismic clan]]
* ''[[Diminished]]'' (+36/35) → [[Dimipent family #Diminished|Dimipent family]] / [[Jubilismic clan #Diminished|jubilismic clan]]
* [[Keemun]], {49/48, 126/125} → [[Kleismic family #Keemun|Kleismic family]]
* [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]]
* ''[[Augene]]'', {64/63, 126/125} → [[Augmented family #Augene|Augmented family]]
* ''[[Augene]]'' (+64/63) → [[Augmented family #Augene|Augmented family]]
* [[Meantone]], {81/80, 126/125} → [[Meantone family #Septimal meantone|Meantone family]]
* [[Meantone]] (+81/80) → [[Meantone family #Septimal meantone|Meantone family]]
* [[Mavila]], {126/125, 135/128} → [[Pelogic family #Mavila|Pelogic family]]
* [[Mavila]] (+135/128) → [[Pelogic family #Mavila|Pelogic family]]
* [[Sensi]], {126/125, 245/243}, [[Sensipent family #Sensi|Sensipent family]] / [[Sensamagic clan #Sensi|sensamagic clan]]
* [[Sensi]] (+245/243), [[Sensipent family #Sensi|Sensipent family]] / [[Sensamagic clan #Sensi|sensamagic clan]]
* ''[[Gilead]]'', {126/125, 343/324} → [[Shibboleth family #Gilead|Shibboleth family]]
* ''[[Gilead]]'' (+343/324) → [[Shibboleth family #Gilead|Shibboleth family]]
* [[Muggles]], {126/125, 525/512} → [[Magic family #Muggles|Magic family]]
* [[Muggles]] (+525/512) → [[Magic family #Muggles|Magic family]]
* ''[[Diaschismic]]'', {126/125, 2048/2025} → [[Diaschismic family #Diaschismic|Diaschismic family]]
* ''[[Diaschismic]]'' (+2048/2025)} → [[Diaschismic family #Diaschismic|Diaschismic family]]
* ''[[Wollemia]]'', {126/125, 2240/2187} → [[Tetracot family #Wollemia|Tetracot family]]
* ''[[Wollemia]]'' (+2240/2187) → [[Tetracot family #Wollemia|Tetracot family]]
* ''[[Unicorn]]'', {126/125, 10976/10935} → [[Unicorn family #Unicorn|Unicorn family]]
* ''[[Unicorn]]'' (+10976/10935) → [[Unicorn family #Unicorn|Unicorn family]]
* ''[[Coblack]]'', {126/125, 16807/16384} → [[Trisedodge family #Coblack|Trisedodge family]] / [[Cloudy clan #Coblack|cloudy clan]]
* ''[[Coblack]]'' (+16807/16384) → [[Trisedodge family #Coblack|Trisedodge family]] / [[Cloudy clan #Coblack|cloudy clan]]
* ''[[Grackle]]'', {126/125, 32805/32768} → [[Schismatic family #Grackle|Schismatic family]]
* ''[[Grackle]]'' (+32805/32768) → [[Schismatic family #Grackle|Schismatic family]]
* ''[[Worschmidt]]'', {126/125, 33075/32768} → [[Würschmidt family #Worschmidt|Würschmidt family]]
* ''[[Worschmidt]]'' (+33075/32768) → [[Würschmidt family #Worschmidt|Würschmidt family]]
* ''[[Passionate]]'', {126/125, 131072/127575} → [[Passion family #Passionate|Passion family]]
* ''[[Passionate]]'' (+131072/127575) → [[Passion family #Passionate|Passion family]]
* ''[[Vishnean]]'', {126/125, 540225/524288} → [[Vishnuzmic family #Vishnean|Vishnuzmic family]]
* ''[[Vishnean]]'' (+540225/524288) → [[Vishnuzmic family #Vishnean|Vishnuzmic family]]
* ''[[Ditonic]]'', {126/125, 8751645/8388608} → [[Ditonmic family #Ditonic|Ditonmic family]]
* ''[[Ditonic]]'' (+8751645/8388608) → [[Ditonmic family #Ditonic|Ditonmic family]]
* ''[[Muscogee]]'', {126/125, 33756345/33554432} → [[Mabila family #Muscogee|Mabila family]]
* ''[[Muscogee]]'' (+33756345/33554432) → [[Mabila family #Muscogee|Mabila family]]


Since (6/5)<sup>3</sup> = 126/125 × 12/7, these temperaments tend to have a relatively small complexity for 6/5. They also possess the [[starling tetrad]], the 6/5-6/5-6/5-7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before [[12edo|12EDO]] established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds.  
Since (6/5)<sup>3</sup> = 126/125 × 12/7, these temperaments tend to have a relatively small complexity for 6/5. They also possess the [[starling tetrad]], the 6/5-6/5-6/5-7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before [[12edo]] established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds.  


== Myna ==
== Myna ==
Line 30: Line 30:
{{Main| Myna }}
{{Main| Myna }}


In addition to 126/125, myna tempers out [[1728/1715]], the orwell comma, and [[2401/2400]], the breedsma. It can also be described as the 27&amp;31 temperament. It has 6/5 as a generator, and [[58edo|58EDO]] can be used as a tuning, with [[89edo|89EDO]] being a better one, and fans of round amounts in cents may like [[120edo|120EDO]]. It is also possible to tune myna with pure fifths by taking 6<sup>1/10</sup> as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits.
In addition to 126/125, myna tempers out [[1728/1715]], the orwell comma, and [[2401/2400]], the breedsma. It can also be described as the 27 &amp; 31 temperament. It has 6/5 as a generator, and [[58edo]] can be used as a tuning, with [[89edo]] being a better one, and fans of round amounts in cents may like [[120edo]]. It is also possible to tune myna with pure fifths by taking 6<sup>1/10</sup> as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 1728/1715
[[Comma list]]: 126/125, 1728/1715


[[Mapping]]: [{{val| 1 9 9 8 }}, {{val| 0 -10 -9 -7 }}]
{{Mapping|legend=1| 1 9 9 8 | 0 -10 -9 -7 }}


Mapping generators: ~2, ~5/3
: mapping generators: ~2, ~5/3


{{Multival|legend=1| 10 9 7 -9 -17 -9 }}
{{Multival|legend=1| 10 9 7 -9 -17 -9 }}


[[POTE generator]]: ~6/5 = 310.146
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 310.146


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}}
* 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}}
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 9/10 9/10 0 0 }}, {{monzo| 17/10 7/10 0 0 }}]
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 9/10 9/10 0 0 | 17/10 7/10 0 0 }}
: [[Eigenmonzo]]s (unchanged-intervals): 2, 3
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.3


{{Optimal ET sequence|legend=1| 27, 31, 58, 89 }}
{{Optimal ET sequence|legend=1| 27, 31, 58, 89 }}
Line 58: Line 58:
Comma list: 126/125, 176/175, 243/242
Comma list: 126/125, 176/175, 243/242


Mapping: [{{val| 1 9 9 8 22 }}, {{val| 0 -10 -9 -7 -25 }}]
Mapping: {{mapping| 1 9 9 8 22 | 0 -10 -9 -7 -25 }}


POTE generator: ~6/5 = 310.144
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.144


{{Optimal ET sequence|legend=1| 27e, 31, 58, 89 }}
{{Optimal ET sequence|legend=1| 27e, 31, 58, 89 }}
Line 71: Line 71:
Comma list: 126/125, 144/143, 176/175, 196/195
Comma list: 126/125, 144/143, 176/175, 196/195


Mapping: [{{val| 1 9 9 8 22 0 }}, {{val| 0 -10 -9 -7 -25 5 }}]
Mapping: {{mapping| 1 9 9 8 22 0 | 0 -10 -9 -7 -25 5 }}


POTE generator: ~6/5 = 310.276
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.276


{{Optimal ET sequence|legend=1| 27e, 31, 58 }}
{{Optimal ET sequence|legend=1| 27e, 31, 58 }}
Line 84: Line 84:
Comma list: 78/77, 91/90, 126/125, 176/175
Comma list: 78/77, 91/90, 126/125, 176/175


Mapping: [{{val| 1 9 9 8 22 20 }}, {{val| 0 -10 -9 -7 -25 -22 }}]
Mapping: {{mapping| 1 9 9 8 22 20 | 0 -10 -9 -7 -25 -22 }}


POTE generator: ~6/5 = 310.381
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.381


{{Optimal ET sequence|legend=1| 27e, 31f, 58f }}
{{Optimal ET sequence|legend=1| 27e, 31f, 58f }}
Line 97: Line 97:
Comma list: 66/65, 105/104, 126/125, 540/539
Comma list: 66/65, 105/104, 126/125, 540/539


Mapping: [{{val| 1 9 9 8 22 23 }}, {{val| 0 -10 -9 -7 -25 -26 }}]
Mapping: {{mapping| 1 9 9 8 22 23 | 0 -10 -9 -7 -25 -26 }}


POTE generator: ~6/5 = 309.804
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.804


{{Optimal ET sequence|legend=1| 27eff, 31 }}
{{Optimal ET sequence|legend=1| 27eff, 31 }}
Line 110: Line 110:
Comma list: 99/98, 126/125, 385/384
Comma list: 99/98, 126/125, 385/384


Mapping: [{{val| 1 9 9 8 -1 }}, {{val| 0 -10 -9 -7 6 }}]
Mapping: {{mapping| 1 9 9 8 -1 | 0 -10 -9 -7 6 }}


POTE generator: ~6/5 = 309.737
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.737


{{Optimal ET sequence|legend=1| 27, 31 }}
{{Optimal ET sequence|legend=1| 27, 31 }}
Line 123: Line 123:
Comma list: 56/55, 100/99, 1728/1715
Comma list: 56/55, 100/99, 1728/1715


Mapping: [{{val| 1 9 9 8 2 }}, {{val| 0 -10 -9 -7 2 }}]
Mapping: {{mapping| 1 9 9 8 2 | 0 -10 -9 -7 2 }}


POTE generator: ~6/5 = 310.853
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.853


{{Optimal ET sequence|legend=1| 4, 23bc, 27e }}
{{Optimal ET sequence|legend=1| 4, 23bc, 27e }}
Line 134: Line 134:
{{Main| Valentine }}
{{Main| Valentine }}


Valentine tempers out 1029/1024 and 6144/6125 as well as 126/125, so it also fits under the heading of the gamelismic clan. It has a generator of 21/20, which can be stripped of its 2 and taken as 3×7/5. In this respect it resembles miracle, with a generator of 3×5/7, and casablanca, with a generator of 5×7/3. These three generators are the simplest in terms of the relationship of tetrads in the [[The Seven Limit Symmetrical Lattices|lattice of 7-limit tetrads]]. Valentine can also be described as the 31&amp;46 temperament, and [[77edo|77EDO]], [[108edo|108EDO]] or [[185edo|185EDO]] make for excellent tunings, which also happen to be excellent tunings for starling temperament, the 126/125 planar temperament. Hence 7-limit valentine can be used whenever starling is wanted, with the extra tempering out of 1029/1024 having no discernible effect on tuning accuracy. Another tuning for valentine uses (3/2)<sup>1/9</sup> as a generator, giving pure 3/2 fifths. Valentine extends naturally to the 11-limit as {{multival| 9 5 -3 7 … }}, tempering out 121/120 and 441/440; 46EDO has a valentine generator 3\46 which is only 0.0117 cents sharp of the minimax generator, (11/7)<sup>1/10</sup>.
Valentine tempers out [[1029/1024]] and [[6144/6125]] as well as 126/125, so it also fits under the heading of the gamelismic clan. It has a generator of 21/20, which can be stripped of its 2 and taken as 3×7/5. In this respect it resembles miracle, with a generator of 3×5/7, and casablanca, with a generator of 5×7/3. These three generators are the simplest in terms of the relationship of tetrads in the [[The Seven Limit Symmetrical Lattices|lattice of 7-limit tetrads]]. Valentine can also be described as the 31 &amp; 46 temperament, and [[77edo]], [[108edo]] or [[185edo]] make for excellent tunings, which also happen to be excellent tunings for starling temperament, the 126/125 planar temperament. Hence 7-limit valentine can be used whenever starling is wanted, with the extra tempering out of 1029/1024 having no discernible effect on tuning accuracy. Another tuning for valentine uses (3/2)<sup>1/9</sup> as a generator, giving pure 3/2 fifths. Valentine extends naturally to the 11-limit as {{multival| 9 5 -3 7 … }}, tempering out 121/120 and 441/440; 46edo has a valentine generator 3\46 which is only 0.0117 cents sharp of the minimax generator, (11/7)<sup>1/10</sup>.


Valentine is very closely related to [[Carlos Alpha]], the rank one nonoctave temperament of Wendy Carlos, as the generator chain of valentine is the same thing as Carlos Alpha. Indeed, the way Carlos uses Alpha in ''Beauty in the Beast'' suggests that she really intended Alpha to be the same thing as valentine, and that it is misdescribed as a rank one temperament. Carlos tells us that "[t]he melodic motions of Alpha are amazingly exotic and fresh, like you've never heard before", and since Alpha lives inside valentine this comment carries over and applies to it if you stick close melodically to generator steps, which is almost impossible not to do since the generator step is so small. MOS of 15, 16, 31 and 46 notes are available to explore these exotic and fresh melodies, or the less exotic ones you might cook up otherwise.
Valentine is very closely related to [[Carlos Alpha]], the rank-1 non-octave temperament of Wendy Carlos, as the generator chain of valentine is the same thing as Carlos Alpha. Indeed, the way Carlos uses Alpha in ''Beauty in the Beast'' suggests that she really intended Alpha to be the same thing as valentine, and that it is misdescribed as a rank-1 temperament. Carlos tells us that "[t]he melodic motions of Alpha are amazingly exotic and fresh, like you've never heard before", and since Alpha lives inside valentine this comment carries over and applies to it if you stick close melodically to generator steps, which is almost impossible not to do since the generator step is so small. MOS of 15, 16, 31 and 46 notes are available to explore these exotic and fresh melodies, or the less exotic ones you might cook up otherwise.


Subgroup: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma list]]: 1990656/1953125
[[Comma list]]: 1990656/1953125


[[Mapping]]: [{{val| 1 1 2 }}, {{val| 0 9 5 }}]
{{Mapping|legend=1| 1 1 2 | 0 9 5 }}


[[POTE generator]]: ~25/24 = 78.039
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/24 = 78.039


{{Optimal ET sequence|legend=1| 15, 31, 46, 77, 123 }}
{{Optimal ET sequence|legend=1| 15, 31, 46, 77, 123 }}
Line 151: Line 151:


=== 7-limit ===
=== 7-limit ===
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 1029/1024
[[Comma list]]: 126/125, 1029/1024


[[Mapping]]: [{{val| 1 1 2 3 }}, {{val| 0 9 5 -3 }}]
{{Mapping|legend=1| 1 1 2 3 | 0 9 5 -3 }}


Mapping generators: ~2, ~21/20
: mapping generators: ~2, ~21/20


[[POTE generator]]: ~21/20 = 77.864
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~21/20 = 77.864


[[Minimax tuning]]:
[[Minimax tuning]]:
* [[7-odd-limit]]: ~21/20 = {{monzo| 1/6 1/12 0 -1/12 }}
* [[7-odd-limit]]: ~21/20 = {{monzo| 1/6 1/12 0 -1/12 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| 5/2 3/4 0 -3/4 }}, {{monzo| 17/6 5/12 0 -5/12 }}, {{monzo| 5/2 -1/4 0 1/4 }}]
: [{{monzo| 1 0 0 0 }}, {{monzo| 5/2 3/4 0 -3/4 }}, {{monzo| 17/6 5/12 0 -5/12 }}, {{monzo| 5/2 -1/4 0 1/4 }}]
: [[Eigenmonzo]]s (unchanged-intervals): 2, 7/6
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/3
* [[9-odd-limit]]: ~21/20 = {{monzo| 1/21 2/21 0 -1/21}}
* [[9-odd-limit]]: ~21/20 = {{monzo| 1/21 2/21 0 -1/21}}
: [{{monzo| 1 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 }}, {{monzo| 47/21 10/21 0 -5/21 }}, {{monzo| 20/7 -2/7 0 1/7 }}]
: [{{monzo| 1 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 }}, {{monzo| 47/21 10/21 0 -5/21 }}, {{monzo| 20/7 -2/7 0 1/7 }}]
: [[Eigenmonzo]]s (unchanged-intervals): 2, 9/7
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7


[[Algebraic generator]]: smaller root of ''x''<sup>2</sup> - 89''x'' + 92, or (89 - sqrt (7553))/2, at 77.8616 cents.  
[[Algebraic generator]]: smaller root of ''x''<sup>2</sup> - 89''x'' + 92, or (89 - sqrt (7553))/2, at 77.8616 cents.  
Line 180: Line 180:
Comma list: 121/120, 126/125, 176/175
Comma list: 121/120, 126/125, 176/175


Mapping: [{{val| 1 1 2 3 3 }}, {{val| 0 9 5 -3 7 }}]
Mapping: {{mapping| 1 1 2 3 3 | 0 9 5 -3 7 }}


Mapping generators: ~2, ~21/20
: mapping generators: ~2, ~21/20


POTE generator: ~21/20 = 77.881
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 77.881


Minimax tuning:
Minimax tuning:
* [[11-odd-limit]]: ~21/20 = {{monzo| 0 0 0 -1/10 1/10 }}
* [[11-odd-limit]]: ~21/20 = {{monzo| 0 0 0 -1/10 1/10 }}
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 0 -9/10 9/10 }}, {{monzo| 2 0 0 -1/2 1/2 }}, {{monzo| 3 0 0 3/10 -3/10 }}, {{monzo| 3 0 0 -7/10 7/10 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 0 -9/10 9/10 }}, {{monzo| 2 0 0 -1/2 1/2 }}, {{monzo| 3 0 0 3/10 -3/10 }}, {{monzo| 3 0 0 -7/10 7/10 }}]
: Eigenmonzos (unchanged-intervals): 2, 11/7
: eigenmonzo (unchanged-interval) basis: 2.11/7


Algebraic generator: positive root of 4''x''<sup>3</sup> + 15''x''<sup>2</sup> - 21, or else Gontrand2, the smallest positive root of 4''x''<sup>7</sup> - 8''x''<sup>6</sup> + 5.
Algebraic generator: positive root of 4''x''<sup>3</sup> + 15''x''<sup>2</sup> - 21, or else Gontrand2, the smallest positive root of 4''x''<sup>7</sup> - 8''x''<sup>6</sup> + 5.
Line 202: Line 202:
Comma list: 91/90, 121/120, 126/125, 176/175
Comma list: 91/90, 121/120, 126/125, 176/175


Mapping: [{{val| 1 1 2 3 3 2 }}, {{val| 0 9 5 -3 7 26 }}]
Mapping: {{mapping| 1 1 2 3 3 2 | 0 9 5 -3 7 26 }}


POTE generator: ~21/20 = 78.219
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 78.219


{{Optimal ET sequence|legend=1| 15, 31f, 46 }}
{{Optimal ET sequence|legend=1| 15, 31f, 46 }}
Line 215: Line 215:
Comma list: 66/65, 105/104, 121/120, 126/125
Comma list: 66/65, 105/104, 121/120, 126/125


Mapping: [{{val| 1 1 2 3 3 3 }}, {{val| 0 9 5 -3 7 11 }}]
Mapping: {{mapping| 1 1 2 3 3 3 | 0 9 5 -3 7 11 }}


POTE generator: ~21/20 = 77.709
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 77.709


{{Optimal ET sequence|legend=1| 15, 31, 77ff, 108eff, 139efff }}
{{Optimal ET sequence|legend=1| 15, 31, 77ff, 108eff, 139efff }}
Line 228: Line 228:
Comma list: 121/120, 126/125, 176/175, 196/195
Comma list: 121/120, 126/125, 176/175, 196/195


Mapping: [{{val| 1 1 2 3 3 5 }}, {{val| 0 9 5 -3 7 -20 }}]
Mapping: {{mapping| 1 1 2 3 3 5 | 0 9 5 -3 7 -20 }}


POTE generator: ~21/20 = 77.958
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 77.958


{{Optimal ET sequence|legend=1| 15f, 31, 46, 77 }}
{{Optimal ET sequence|legend=1| 15f, 31, 46, 77 }}
Line 241: Line 241:
Comma list: 121/120, 126/125, 154/153, 176/175, 196/195
Comma list: 121/120, 126/125, 154/153, 176/175, 196/195


Mapping: [{{val| 1 1 2 3 3 5 5 }}, {{val| 0 9 5 -3 7 -20 -14 }}]
Mapping: {{mapping| 1 1 2 3 3 5 5 | 0 9 5 -3 7 -20 -14 }}


POTE generator: ~21/20 = 78.003
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 78.003


{{Optimal ET sequence|legend=1| 15f, 31, 46, 77, 123e, 200ceg }}
{{Optimal ET sequence|legend=1| 15f, 31, 46, 77, 123e, 200ceg }}
Line 254: Line 254:
Comma list: 121/120, 126/125, 169/168, 176/175
Comma list: 121/120, 126/125, 169/168, 176/175


Mapping: [{{val| 2 2 4 6 6 7 }}, {{val| 0 9 5 -3 7 3 }}]
Mapping: {{mapping| 2 2 4 6 6 7 | 0 9 5 -3 7 3 }}


POTE generator: ~21/20 = 77.839
Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 77.839


{{Optimal ET sequence|legend=1| 16, 30, 46, 62, 108ef }}
{{Optimal ET sequence|legend=1| 16, 30, 46, 62, 108ef }}
Line 267: Line 267:
Comma list: 121/120, 126/125, 176/175, 343/338
Comma list: 121/120, 126/125, 176/175, 343/338


Mapping: [{{val| 1 1 2 3 3 4 }}, {{val| 0 18 10 -6 14 -9 }}]
Mapping: {{mapping| 1 1 2 3 3 4 | 0 18 10 -6 14 -9 }}


POTE generator: ~40/39 = 39.044
Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 39.044


{{Optimal ET sequence|legend=1| 30, 31, 61, 92f, 123f }}
{{Optimal ET sequence|legend=1| 30, 31, 61, 92f, 123f }}
Line 280: Line 280:
Comma list: 126/125, 243/242, 1029/1024
Comma list: 126/125, 243/242, 1029/1024


Mapping: [{{val| 1 1 2 3 2 }}, {{val| 0 18 10 -6 45 }}]
Mapping: {{mapping| 1 1 2 3 2 | 0 18 10 -6 45 }}


POTE generator: ~45/44 = 38.921
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.921


{{Optimal ET sequence|legend=1| 31, 92e, 123, 154, 185 }}
{{Optimal ET sequence|legend=1| 31, 92e, 123, 154, 185 }}
Line 293: Line 293:
Comma list: 126/125, 196/195, 243/242, 1029/1024
Comma list: 126/125, 196/195, 243/242, 1029/1024


Mapping: [{{val| 1 1 2 3 2 5 }}, {{val| 0 18 10 -6 45 -40 }}]
Mapping: {{mapping| 1 1 2 3 2 5 | 0 18 10 -6 45 -40 }}


POTE generator: ~45/44 = 38.948
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.948


{{Optimal ET sequence|legend=1| 31, 92e, 123, 154 }}
{{Optimal ET sequence|legend=1| 31, 92e, 123, 154 }}
Line 306: Line 306:
Comma list: 126/125, 144/143, 243/242, 343/338
Comma list: 126/125, 144/143, 243/242, 343/338


Mapping: [{{val| 1 1 2 3 2 4 }}, {{val| 0 18 10 -6 45 -9 }}]
Mapping: {{mapping| 1 1 2 3 2 4 | 0 18 10 -6 45 -9 }}


POTE generator: ~40/39 = 38.993
Optimal tuning (POTE): ~2 = 1\1, ~40/39 = 38.993


{{Optimal ET sequence|legend=1| 31, 92ef, 123f }}
{{Optimal ET sequence|legend=1| 31, 92ef, 123f }}
Line 317: Line 317:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Nusecond]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Nusecond]].''


Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as 31&amp;70. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. [[31edo|31EDO]] can be used as a tuning, or [[132edo|132EDO]] with a val which is the sum of the [[patent val]]s for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. MOS of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note MOS might also be considered from the melodic point of view.
Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as 31 &amp; 70. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. [[31edo]] can be used as a tuning, or [[132edo]] with a val which is the sum of the [[patent val]]s for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. MOS of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note MOS might also be considered from the melodic point of view.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 2430/2401
[[Comma list]]: 126/125, 2430/2401


[[Mapping]]: [{{val| 1 3 4 5 }}, {{val| 0 -11 -13 -17 }}]
{{Mapping|legend=1| 1 3 4 5 | 0 -11 -13 -17 }}


Mapping generators: ~2, ~49/45
: mapping generators: ~2, ~49/45


{{Multival|legend=1| 11 13 17 -5 -4 3 }}
{{Multival|legend=1| 11 13 17 -5 -4 3 }}


[[POTE generator]]: ~49/45 = 154.579
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/45 = 154.579


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }}
* [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| -5/13 0 11/13 0 }}, {{monzo| 0 0 1 0 }}, {{monzo| -3/13 0 17/13 0 }}]
: {{monzo list| 1 0 0 0 | -5/13 0 11/13 0 | 0 0 1 0 | -3/13 0 17/13 0 }}
: [[Eigenmonzo]]s (unchanged-intervals): 2, 5
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
* [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }}
* [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 5/11 13/11 0 0 }}, {{monzo| 4/11 17/11 0 0 }}]
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 5/11 13/11 0 0 | 4/11 17/11 0 0 }}
: [[Eigenmonzo]]s (unchanged-intervals): 2, 3
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.3


{{Optimal ET sequence|legend=1| 8d, 23d, 31, 101, 132c, 163c }}
{{Optimal ET sequence|legend=1| 8d, 23d, 31, 101, 132c, 163c }}
Line 348: Line 348:
Comma list: 99/98, 121/120, 126/125
Comma list: 99/98, 121/120, 126/125


Mapping: [{{val| 1 3 4 5 5 }}, {{val| 0 -11 -13 -17 -12 }}]
Mapping: {{mapping| 1 3 4 5 5 | 0 -11 -13 -17 -12 }}


Mapping generators: ~2, ~11/10
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.645
 
POTE generator: ~11/10 = 154.645


Minimax tuning:  
Minimax tuning:  
* [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }}
* [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }}
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}]
: Eigenmonzos (unchanged-intervals): 2, 11/9
: eigenmonzo (unchanged-interval) basis: 2.11/9


Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly.
Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly.
Line 370: Line 368:
Comma list: 66/65, 99/98, 121/120, 126/125
Comma list: 66/65, 99/98, 121/120, 126/125


Mapping: [{{val| 1 3 4 5 5 5 }}, {{val| 0 -11 -13 -17 -12 -10 }}]
Mapping: {{mapping| 1 3 4 5 5 5 | 0 -11 -13 -17 -12 -10 }}


POTE generator: ~11/10 = 154.478
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.478


{{Optimal ET sequence|legend=1| 8d, 23de, 31, 70f, 101ff }}
{{Optimal ET sequence|legend=1| 8d, 23de, 31, 70f, 101ff }}
Line 382: Line 380:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Oolong]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Oolong]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 117649/116640
[[Comma list]]: 126/125, 117649/116640


[[Mapping]]: [{{val| 1 6 7 8 }}, {{val| 0 -17 -18 -20 }}]
{{Mapping|legend=1| 1 6 7 8 | 0 -17 -18 -20 }}


{{Multival|legend=1| 17 18 20 -11 -16 -4 }}
{{Multival|legend=1| 17 18 20 -11 -16 -4 }}


[[POTE generator]]: ~6/5 = 311.679
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 311.679


{{Optimal ET sequence|legend=1| 27, 50, 77 }}
{{Optimal ET sequence|legend=1| 27, 50, 77 }}
Line 401: Line 399:
Comma list: 126/125, 176/175, 26411/26244
Comma list: 126/125, 176/175, 26411/26244


Mapping: [{{val| 1 6 7 8 18 }}, {{val| 0 -17 -18 -20 -56 }}]
Mapping: {{mapping| 1 6 7 8 18 | 0 -17 -18 -20 -56 }}


POTE generator: ~6/5 = 311.587
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.587


{{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }}
{{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }}
Line 414: Line 412:
Comma list: 126/125, 176/175, 196/195, 13013/12960
Comma list: 126/125, 176/175, 196/195, 13013/12960


Mapping: [{{val| 1 6 7 8 18 5 }}, {{val| 0 -17 -18 -20 -56 -5 }}]
Mapping: {{mapping| 1 6 7 8 18 5 | 0 -17 -18 -20 -56 -5 }}


POTE generator: ~6/5 = 311.591
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.591


{{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }}
{{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }}
Line 425: Line 423:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Vines]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Vines]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 84035/82944
[[Comma list]]: 126/125, 84035/82944


[[Mapping]]: [{{val| 2 7 8 8 }}, {{val| 0 -8 -7 -5 }}]
{{Mapping|legend=1| 2 7 8 8 | 0 -8 -7 -5 }}


[[POTE generator]]: ~6/5 = 312.602
[[Optimal tuning]] ([[POTE]]): 1\2, ~6/5 = 312.602


{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }}
{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }}
Line 442: Line 440:
Comma list: 126/125, 385/384, 2401/2376
Comma list: 126/125, 385/384, 2401/2376


Mapping: [{{val| 2 7 8 8 5 }}, {{val| 0 -8 -7 -5 4 }}]
Mapping: {{mapping| 2 7 8 8 5 | 0 -8 -7 -5 4 }}


POTE generator: ~6/5 = 312.601
Optimal tuning (POTE): 1\2, ~6/5 = 312.601


{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }}
{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }}
Line 455: Line 453:
Comma list: 126/125, 196/195, 364/363, 385/384
Comma list: 126/125, 196/195, 364/363, 385/384


Mapping: [{{val| 2 7 8 8 5 5 }}, {{val| 0 -8 -7 -5 4 5 }}]
Mapping: {{mapping| 2 7 8 8 5 5 | 0 -8 -7 -5 4 5 }}


POTE generator: ~6/5 = 312.564
Optimal tuning (POTE): 1\2, ~6/5 = 312.564


{{Optimal ET sequence|legend=1| 42, 46, 96d, 238ddf }}
{{Optimal ET sequence|legend=1| 42, 46, 96d, 238ddf }}
Line 466: Line 464:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Kumonga]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Kumonga]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 12288/12005
[[Comma list]]: 126/125, 12288/12005


[[Mapping]]: [{{val| 1 4 4 3 }}, {{val| 0 -13 -9 -1 }}]
{{Mapping|legend=1| 1 4 4 3 | 0 -13 -9 -1 }}


{{Multival|legend=1| 13 9 1 -16 -35 -23 }}
{{Multival|legend=1| 13 9 1 -16 -35 -23 }}


[[POTE generator]]: ~8/7 = 222.797
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 222.797


{{Optimal ET sequence|legend=1| 16, 27, 43, 70, 167ccdd }}
{{Optimal ET sequence|legend=1| 16, 27, 43, 70, 167ccdd }}
Line 485: Line 483:
Comma list: 126/125, 176/175, 864/847
Comma list: 126/125, 176/175, 864/847


Mapping: [{{val| 1 4 4 3 7 }}, {{val| 0 -13 -9 -1 -19 }}]
Mapping: {{mapping| 1 4 4 3 7 | 0 -13 -9 -1 -19 }}


POTE generator: ~8/7 = 222.898
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.898


{{Optimal ET sequence|legend=1| 16, 27e, 43, 70e }}
{{Optimal ET sequence|legend=1| 16, 27e, 43, 70e }}
Line 498: Line 496:
Comma list: 78/77, 126/125, 144/143, 176/175
Comma list: 78/77, 126/125, 144/143, 176/175


Mapping: [{{val| 1 4 4 3 7 5 }}, {{val| 0 -13 -9 -1 -19 -7 }}]
Mapping: {{mapping| 1 4 4 3 7 5 | 0 -13 -9 -1 -19 -7 }}


POTE generator: ~8/7 = 222.961
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.961


{{Optimal ET sequence|legend=1| 16, 27e, 43, 70e, 113cdee }}
{{Optimal ET sequence|legend=1| 16, 27e, 43, 70e, 113cdee }}
Line 509: Line 507:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Thuja]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Thuja]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 65536/64827
[[Comma list]]: 126/125, 65536/64827


[[Mapping]]: [{{val| 1 -4 0 7 }}, {{val| 0 12 5 -9 }}]
{{Mapping|legend=1| 1 -4 0 7 | 0 12 5 -9 }}


{{Multival|legend=1| 12 5 -9 -20 -48 -35 }}
{{Multival|legend=1| 12 5 -9 -20 -48 -35 }}


[[POTE generator]]: ~175/128 = 558.605
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~175/128 = 558.605


{{Optimal ET sequence|legend=1| 15, 43, 58 }}
{{Optimal ET sequence|legend=1| 15, 43, 58 }}
Line 528: Line 526:
Comma list: 126/125, 176/175, 1344/1331
Comma list: 126/125, 176/175, 1344/1331


Mapping: [{{val| 1 -4 0 7 3 }}, {{val| 0 12 5 -9 1 }}]
Mapping: {{mapping| 1 -4 0 7 3 | 0 12 5 -9 1 }}


POTE generator: ~11/8 = 558.620
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 558.620


{{Optimal ET sequence|legend=1| 15, 43, 58 }}
{{Optimal ET sequence|legend=1| 15, 43, 58 }}
Line 541: Line 539:
Comma list: 126/125, 144/143, 176/175, 364/363
Comma list: 126/125, 144/143, 176/175, 364/363


Mapping: [{{val| 1 -4 0 7 3 -7 }}, {{val| 0 12 5 -9 1 23 }}]
Mapping: {{mapping| 1 -4 0 7 3 -7 | 0 12 5 -9 1 23 }}


POTE generator: ~11/8 = 558.589
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 558.589


{{Optimal ET sequence|legend=1| 15, 43, 58 }}
{{Optimal ET sequence|legend=1| 15, 43, 58 }}
Line 554: Line 552:
Comma list: 126/125, 144/143, 176/175, 221/220, 256/255
Comma list: 126/125, 144/143, 176/175, 221/220, 256/255


Mapping: [{{val| 1 -4 0 7 3 -7 12 }}, {{val| 0 12 5 -9 1 23 -17 }}]
Mapping: {{mapping| 1 -4 0 7 3 -7 12 | 0 12 5 -9 1 23 -17 }}


POTE generator: ~11/8 = 558.509
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 558.509


{{Optimal ET sequence|legend=1| 15, 43, 58 }}
{{Optimal ET sequence|legend=1| 15, 43, 58 }}
Line 567: Line 565:
Comma list: 96/95, 126/125, 144/143, 153/152, 176/175, 221/220
Comma list: 96/95, 126/125, 144/143, 153/152, 176/175, 221/220


Mapping: [{{val| 1 -4 0 7 3 -7 12 1 }}, {{val| 0 12 5 -9 1 23 -17 7 }}]
Mapping: {{mapping| 1 -4 0 7 3 -7 12 1 | 0 12 5 -9 1 23 -17 7 }}


POTE generator: ~11/8 = 558.504
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 558.504


{{Optimal ET sequence|legend=1| 15, 43, 58h }}
{{Optimal ET sequence|legend=1| 15, 43, 58h }}
Line 580: Line 578:
Comma list: 96/95, 126/125, 144/143, 153/152, 176/175, 221/220, 231/230
Comma list: 96/95, 126/125, 144/143, 153/152, 176/175, 221/220, 231/230


Mapping: [{{val| 1 -4 0 7 3 -7 12 1 5 }}, {{val| 0 12 5 -9 1 23 -17 7 -1 }}]
Mapping: {{mapping| 1 -4 0 7 3 -7 12 1 5 | 0 12 5 -9 1 23 -17 7 -1 }}


POTE generator: ~11/8 = 558.522
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 558.522


{{Optimal ET sequence|legend=1| 15, 43, 58hi }}
{{Optimal ET sequence|legend=1| 15, 43, 58hi }}
Line 595: Line 593:
Comma list: 96/95, 116/115, 126/125, 144/143, 153/152, 176/175, 221/220, 231/230
Comma list: 96/95, 116/115, 126/125, 144/143, 153/152, 176/175, 221/220, 231/230


Mapping: [{{val| 1 -4 0 7 3 -7 12 1 5 3 }}, {{val| 0 12 5 -9 1 23 -17 7 -1 4 }}]
Mapping: {{mapping| 1 -4 0 7 3 -7 12 1 5 3 | 0 12 5 -9 1 23 -17 7 -1 4 }}


POTE generator: ~11/8 = 558.520
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 558.520


{{Optimal ET sequence|legend=1| 15, 43, 58hi }}
{{Optimal ET sequence|legend=1| 15, 43, 58hi }}
Line 606: Line 604:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Cypress]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Cypress]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 19683/19208
[[Comma list]]: 126/125, 19683/19208


[[Mapping]]: [{{val| 1 7 10 15 }}, {{val| 0 -12 -17 -27 }}]
{{Mapping|legend=1| 1 7 10 15 | 0 -12 -17 -27 }}


{{Multival|legend=1| 12 17 27 -1 9 15 }}
{{Multival|legend=1| 12 17 27 -1 9 15 }}


[[POTE generator]]: ~135/98 = 541.828
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~135/98 = 541.828


{{Optimal ET sequence|legend=1| 11cd, 20cd, 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bbcd }}
{{Optimal ET sequence|legend=1| 11cd, 20cd, 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bbcd }}
Line 625: Line 623:
Comma list: 99/98, 126/125, 243/242
Comma list: 99/98, 126/125, 243/242


Mapping: [{{val| 1 7 10 15 17 }}, {{val| 0 -12 -17 -27 -30 }}]
Mapping: {{mapping| 1 7 10 15 17 | 0 -12 -17 -27 -30 }}


POTE generator: ~15/11 = 541.772
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.772


{{Optimal ET sequence|legend=1| 11cdee, 20cde, 31, 144cd, 175cd, 206bcde, 237bcde }}
{{Optimal ET sequence|legend=1| 11cdee, 20cde, 31, 144cd, 175cd, 206bcde, 237bcde }}
Line 638: Line 636:
Comma list: 66/65, 99/98, 126/125, 243/242
Comma list: 66/65, 99/98, 126/125, 243/242


Mapping: [{{val| 1 7 10 15 17 15 }}, {{val| 0 -12 -17 -27 -30 -25 }}]
Mapping: {{mapping| 1 7 10 15 17 15 | 0 -12 -17 -27 -30 -25 }}


POTE generator: ~15/11 = 541.778
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.778


{{Optimal ET sequence|legend=1| 11cdeef, 20cdef, 31 }}
{{Optimal ET sequence|legend=1| 11cdeef, 20cdef, 31 }}
Line 647: Line 645:


== Bisemidim ==
== Bisemidim ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 118098/117649
[[Comma list]]: 126/125, 118098/117649


[[Mapping]]: [{{val| 2 1 2 2 }}, {{val| 0 9 11 15 }}]
{{Mapping|legend=1| 2 1 2 2 | 0 9 11 15 }}


{{Multival|legend=1| 18 22 30 -7 -3 8 }}
{{Multival|legend=1| 18 22 30 -7 -3 8 }}


[[POTE generator]]: ~35/27 = 455.445
[[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~35/27 = 455.445


{{Optimal ET sequence|legend=1| 50, 58, 108, 166c, 408ccc }}
{{Optimal ET sequence|legend=1| 50, 58, 108, 166c, 408ccc }}
Line 666: Line 664:
Comma list: 126/125, 540/539, 1344/1331
Comma list: 126/125, 540/539, 1344/1331


Mapping: [{{val| 2 1 2 2 5 }}, {{val| 0 9 11 15 8 }}]
Mapping: {{mapping| 2 1 2 2 5 | 0 9 11 15 8 }}


POTE generator: ~35/27 = 455.373
Optimal tuning (POTE): ~99/70 = 1\2, ~35/27 = 455.373


{{Optimal ET sequence|legend=1| 50, 58, 108, 166ce, 224cee }}
{{Optimal ET sequence|legend=1| 50, 58, 108, 166ce, 224cee }}
Line 679: Line 677:
Comma list: 126/125, 144/143, 196/195, 364/363
Comma list: 126/125, 144/143, 196/195, 364/363


Mapping: [{{val| 2 1 2 2 5 5 }}, {{val| 0 9 11 15 8 10 }}]
Mapping: {{mapping| 2 1 2 2 5 5 | 0 9 11 15 8 10 }}


POTE generator: ~35/27 = 455.347
Optimal tuning (POTE): ~55/39 = 1\2, ~13/10 = 455.347


{{Optimal ET sequence|legend=1| 50, 58, 166cef, 224ceeff }}
{{Optimal ET sequence|legend=1| 50, 58, 166cef, 224ceeff }}
Line 690: Line 688:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Casablanca]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Casablanca]].''


Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described as 31&amp;73. 74\135 or 91\166 supply good tunings for the generator, and 20 and 31 note MOS are available.
Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described as 31 &amp; 73. 74\135 or 91\166 supply good tunings for the generator, and 20- and 31-note mosses are available.


It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the 35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a [[hexany]] and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone.
It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the ~35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a [[hexany]] and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 589824/588245
[[Comma list]]: 126/125, 589824/588245


[[Mapping]]: [{{val| 1 12 10 5 }}, {{val| 0 -19 -14 -4 }}]
{{Mapping|legend=1| 1 12 10 5 | 0 -19 -14 -4 }}


{{Multival|legend=1| 19 14 4 -22 -47 -30 }}
{{Multival|legend=1| 19 14 4 -22 -47 -30 }}


[[POTE generator]]: ~35/24 = 657.818
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/24 = 657.818


{{Optimal ET sequence|legend=1| 11b, 20b, 31, 104c, 135c, 166c }}
{{Optimal ET sequence|legend=1| 11b, 20b, 31, 104c, 135c, 166c }}
Line 713: Line 711:
Comma list: 126/125, 385/384, 2420/2401
Comma list: 126/125, 385/384, 2420/2401


Mapping: [{{val| 1 12 10 5 4 }}, {{val| 0 -19 -14 -4 -1 }}]
Mapping: {{mapping| 1 12 10 5 4 | 0 -19 -14 -4 -1 }}


POTE generator: ~16/11 = 657.923
Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.923


{{Optimal ET sequence|legend=1| 11b, 20b, 31 }}
{{Optimal ET sequence|legend=1| 11b, 20b, 31 }}
Line 726: Line 724:
Comma list: 126/125, 196/195, 385/384, 2420/2401
Comma list: 126/125, 196/195, 385/384, 2420/2401


Mapping: [{{val| 1 12 10 5 4 7 }}, {{val| 0 -19 -14 -4 -1 -6 }}]
Mapping: {{mapping| 1 12 10 5 4 7 | 0 -19 -14 -4 -1 -6 }}


POTE generator: ~16/11 = 657.854
Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.854


{{Optimal ET sequence|legend=1| 11b, 20b, 31 }}
{{Optimal ET sequence|legend=1| 11b, 20b, 31 }}
Line 737: Line 735:
Comma list: 126/125, 176/175, 14641/14580
Comma list: 126/125, 176/175, 14641/14580


Mapping: [{{val| 1 12 10 5 21 }}, {{val| 0 -19 -14 -4 -32 }}]
Mapping: {{mapping| 1 12 10 5 21 | 0 -19 -14 -4 -32 }}


POTE generator: ~22/15 = 657.791
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.791


{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c }}
{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c }}
Line 750: Line 748:
Comma list: 126/125, 176/175, 196/195, 14641/14580
Comma list: 126/125, 176/175, 196/195, 14641/14580


Mapping: [{{val| 1 12 10 5 21 -10 }}, {{val| 0 -19 -14 -4 -32 25 }}]
Mapping: {{mapping| 1 12 10 5 21 -10 | 0 -19 -14 -4 -32 25 }}


POTE generator: ~22/15 = 657.756
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.756


{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c, 239ccf }}
{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c, 239ccf }}
Line 763: Line 761:
Comma list: 126/125, 144/143, 176/175, 1540/1521
Comma list: 126/125, 144/143, 176/175, 1540/1521


Mapping: [{{val| 1 12 10 5 21 7 }}, {{val| 0 -19 -14 -4 -32 -6 }}]
Mapping: {{mapping| 1 12 10 5 21 7 | 0 -19 -14 -4 -32 -6 }}


POTE generator: ~22/15 = 657.700
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.700


{{Optimal ET sequence|legend=1| 31, 104cff, 135cff }}
{{Optimal ET sequence|legend=1| 31, 104cff, 135cff }}
Line 772: Line 770:


== Amigo ==
== Amigo ==
{{see also| High badness temperaments #Magus }}
{{See also| High badness temperaments #Magus }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 2097152/2083725
[[Comma list]]: 126/125, 2097152/2083725


[[Mapping]]: [{{val| 1 -2 2 9 }}, {{val| 0 11 1 -19 }}]
{{Mapping|legend=1| 1 -2 2 9 | 0 11 1 -19 }}


{{Multival|legend=1| 11 1 -19 -24 -61 -47 }}
{{Multival|legend=1| 11 1 -19 -24 -61 -47 }}


[[POTE generator]]: ~5/4 = 391.094
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.094


{{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 359cc }}
{{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 359cc }}
Line 793: Line 791:
Comma list: 126/125, 176/175, 16384/16335
Comma list: 126/125, 176/175, 16384/16335


Mapping: [{{val| 1 -2 2 9 9 }}, {{val| 0 11 1 -19 -17 }}]
Mapping: {{mapping| 1 -2 2 9 9 | 0 11 1 -19 -17 }}


POTE generator: ~5/4 = 391.075
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.075


{{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 224c }}
{{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 224c }}
Line 806: Line 804:
Comma list: 126/125, 169/168, 176/175, 364/363
Comma list: 126/125, 169/168, 176/175, 364/363


Mapping: [{{val| 1 -2 2 9 9 5 }}, {{val| 0 11 1 -19 -17 -4 }}]
Mapping: {{mapping| 1 -2 2 9 9 5 | 0 11 1 -19 -17 -4 }}


POTE generator: ~5/4 = 391.073
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.073


{{Optimal ET sequence|legend=1| 43, 46, 89, 135cf, 224cf }}
{{Optimal ET sequence|legend=1| 43, 46, 89, 135cf, 224cf }}
Line 817: Line 815:
Supersensi (8d &amp; 43) has supermajor third as a generator like [[sensi]], but the no-fives comma 17496/16807 rather than 245/243 tempered out.
Supersensi (8d &amp; 43) has supermajor third as a generator like [[sensi]], but the no-fives comma 17496/16807 rather than 245/243 tempered out.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 17496/16807
[[Comma list]]: 126/125, 17496/16807


[[Mapping]]: [{{val| 1 -4 -4 -5 }}, {{val| 0 15 17 21 }}]
{{Mapping|legend=1| 1 -4 -4 -5 | 0 15 17 21 }}


{{Multival|legend=1| 15 17 21 -8 -9 1 }}
{{Multival|legend=1| 15 17 21 -8 -9 1 }}


[[POTE generator]]: ~343/270 = 446.568
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/270 = 446.568


{{Optimal ET sequence|legend=1| 8d, 35, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35, 43 }}
Line 836: Line 834:
Comma list: 99/98, 126/125, 864/847
Comma list: 99/98, 126/125, 864/847


Mapping: [{{val| 1 -4 -4 -5 -1 }}, {{val| 0 15 17 21 12 }}]
Mapping: {{mapping| 1 -4 -4 -5 -1 | 0 15 17 21 12 }}


POTE generator: ~72/55 = 446.616
Optimal tuning (POTE): ~2 = 1\1, ~72/55 = 446.616


{{Optimal ET sequence|legend=1| 8d, 35, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35, 43 }}
Line 849: Line 847:
Comma list: 78/77, 99/98, 126/125, 144/143
Comma list: 78/77, 99/98, 126/125, 144/143


Mapping: [{{val| 1 -4 -4 -5 -1 -3 }}, {{val| 0 15 17 21 12 18 }}]
Mapping: {{mapping| 1 -4 -4 -5 -1 -3 | 0 15 17 21 12 18 }}


POTE generator: ~13/10 = 446.598
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.598


{{Optimal ET sequence|legend=1| 8d, 35f, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35f, 43 }}
Line 862: Line 860:
Comma list: 78/77, 99/98, 120/119, 126/125, 144/143
Comma list: 78/77, 99/98, 120/119, 126/125, 144/143


Mapping: [{{val| 1 -4 -4 -5 -1 -3 0 }}, {{val| 0 15 17 21 12 18 11 }}]
Mapping: {{mapping| 1 -4 -4 -5 -1 -3 0 | 0 15 17 21 12 18 11 }}


POTE generator: ~13/10 = 446.631
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.631


{{Optimal ET sequence|legend=1| 8d, 35f, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35f, 43 }}
Line 871: Line 869:


== Cobalt ==
== Cobalt ==
The name of ''cobalt temperament'' comes from Cobalt, the 27th element.
The name of the cobalt temperament comes from the 27th element.


Cobalt (27 &amp; 81) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the [[Starling family #Aplonis|aplonis temperament]].  
Cobalt (27 &amp; 81) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the [[Starling family #Aplonis|aplonis temperament]].  


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 40353607/40310784
[[Comma list]]: 126/125, 40353607/40310784


[[Mapping]]: [{{val|27 43 63 76}}, {{val|0 -1 -1 -1}}]
{{Mapping|legend=1| 27 43 63 76 | 0 -1 -1 -1 }}


[[POTE generator]]: ~3/2 = 701.244
[[Optimal tuning]] ([[POTE]]): 1\27, ~3/2 = 701.244


{{Optimal ET sequence|legend=1| 27, 81, 108, 135c, 243c }}
{{Optimal ET sequence|legend=1| 27, 81, 108, 135c, 243c }}
Line 892: Line 890:
Comma list: 126/125, 540/539, 21609/21296
Comma list: 126/125, 540/539, 21609/21296


Mapping: [{{val|27 43 63 76 94}}, {{val|0 -1 -1 -1 -2}}]
Mapping: {{mapping| 27 43 63 76 94 | 0 -1 -1 -1 -2 }}


POTE generator: ~3/2 = 700.001
Optimal tuning (POTE): 1\27, ~3/2 = 700.001


{{Optimal ET sequence|legend=1| 27e, 81, 108 }}
{{Optimal ET sequence|legend=1| 27e, 81, 108 }}
Line 905: Line 903:
Comma list: 126/125, 144/143, 196/195, 21609/21296
Comma list: 126/125, 144/143, 196/195, 21609/21296


Mapping: [{{val|27 43 63 76 94 100}}, {{val|0 -1 -1 -1 -2 0}}]
Mapping: {{mapping| 27 43 63 76 94 100 | 0 -1 -1 -1 -2 0 }}


POTE generator: ~3/2 = 700.867
Optimal tuning (POTE): 1\27, ~3/2 = 700.867


{{Optimal ET sequence|legend=1| 27e, 81, 108, 243ceef }}
{{Optimal ET sequence|legend=1| 27e, 81, 108, 243ceef }}
Line 918: Line 916:
Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445
Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445


Mapping: [{{val|27 43 63 76 94 100 111}}, {{val|0 -1 -1 -1 -2 0 -2}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 | 0 -1 -1 -1 -2 0 -2 }}


POTE generator: ~3/2 = 700.397
Optimal tuning (POTE): 1\27, ~3/2 = 700.397


{{Optimal ET sequence|legend=1| 27eg, 81, 108g }}
{{Optimal ET sequence|legend=1| 27eg, 81, 108g }}
Line 931: Line 929:
Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968
Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968


Mapping: [{{val|27 43 63 76 94 100 111 115}}, {{val|0 -1 -1 -1 -2 0 -2 -1}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 115 | 0 -1 -1 -1 -2 0 -2 -1 }}


POTE generator: ~3/2 = 700.429
Optimal tuning (POTE): 1\27, ~3/2 = 700.429


{{Optimal ET sequence|legend=1| 27eg, 81, 108g }}
{{Optimal ET sequence|legend=1| 27eg, 81, 108g }}
Line 944: Line 942:
Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968
Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968


Mapping: [{{val|27 43 63 76 94 100 111}}, {{val|0 -1 -1 -1 -2 0 -3}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 | 0 -1 -1 -1 -2 0 -3 }}


POTE generator: ~3/2 = 701.595
Optimal tuning (POTE): 1\27, ~3/2 = 701.595


{{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ce }}
{{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ce }}
Line 957: Line 955:
Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083
Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083


Mapping: [{{val|27 43 63 76 94 100 111 115}}, {{val|0 -1 -1 -1 -2 0 -3 -1}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 115 | 0 -1 -1 -1 -2 0 -3 -1 }}


POTE generator: ~3/2 = 701.673
Optimal tuning (POTE): 1\27, ~3/2 = 701.673


{{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ceh }}
{{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ceh }}
Line 970: Line 968:
Comma list: 126/125, 169/168, 540/539, 975/968
Comma list: 126/125, 169/168, 540/539, 975/968


Mapping: [{{val|27 43 63 76 94 100}}, {{val|0 -1 -1 -1 -2 -1}}]
Mapping: {{mapping| 27 43 63 76 94 100 | 0 -1 -1 -1 -2 -1 }}


POTE generator: ~3/2 = 699.179
Optimal tuning (POTE): 1\27, ~3/2 = 699.179


{{Optimal ET sequence|legend=1| 27e, 54bdef, 81f, 108f }}
{{Optimal ET sequence|legend=1| 27e, 54bdef, 81f, 108f }}