Dyadic chord/Pattern of essentially tempered chords: Difference between revisions
+defective pattern 1 |
+pattern 2 (wip) |
||
Line 4: | Line 4: | ||
Pattern 1 turns up for commas of the form (''n''<sub>1</sub><sup>2</sup>''n''<sub>2</sub>)/(''d''<sub>1</sub><sup>2</sup>''d''<sub>2</sub>) up to [[octave equivalence]]. It contains a palindromic triad and an inversely related pair of triads, two palindromic tetrads and two inversely related pairs of tetrads, and an inversely related pair of pentads, for a total of 11 distinct chord structures. | Pattern 1 turns up for commas of the form (''n''<sub>1</sub><sup>2</sup>''n''<sub>2</sub>)/(''d''<sub>1</sub><sup>2</sup>''d''<sub>2</sub>) up to [[octave equivalence]]. It contains a palindromic triad and an inversely related pair of triads, two palindromic tetrads and two inversely related pairs of tetrads, and an inversely related pair of pentads, for a total of 11 distinct chord structures. | ||
Pattern 1 has two subpatterns, 1a and 1b, both of whose basic palindromic triads are of the same form, but their final pentad extensions differ. The palindromic triad is | Pattern 1 has two subpatterns, 1a and 1b, both of whose basic palindromic triads are of the same form, but their final pentad extensions differ. Examples of pattern 1a chords are [[cuthbert chords]] (13-odd-limit), [[aureusmic chords]] (19-odd-limit) and [[palingenetic chords]] (21-odd-limit). Examples of pattern 1b chords are [[lambeth chords]] (13-odd-limit) and [[sextantonismic chords]] (17-odd-limit). | ||
The palindromic triad is | |||
* 1-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>2</sub>/''d''<sub>2</sub> with steps ''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>2</sub>/''n''<sub>2</sub>. | * 1-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>2</sub>/''d''<sub>2</sub> with steps ''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>2</sub>/''n''<sub>2</sub>. | ||
Line 25: | Line 27: | ||
* 1-''n''<sub>1</sub>/''d''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>2</sub> with steps ''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub>-''d''<sub>2</sub>/''n''<sub>2</sub>, and its inverse | * 1-''n''<sub>1</sub>/''d''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>2</sub> with steps ''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub>-''d''<sub>2</sub>/''n''<sub>2</sub>, and its inverse | ||
* 1-''n''<sub>2</sub>/''d''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>2</sub>/''n''<sub>1</sub>-''n''<sub>2</sub>/''d''<sub>2</sub> with steps ''n''<sub>2</sub>/''d''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''d''<sub>2</sub>/''n''<sub>2</sub>. | * 1-''n''<sub>2</sub>/''d''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>2</sub>/''n''<sub>1</sub>-''n''<sub>2</sub>/''d''<sub>2</sub> with steps ''n''<sub>2</sub>/''d''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''d''<sub>2</sub>/''n''<sub>2</sub>. | ||
=== Pattern 1b === | === Pattern 1b === | ||
Line 46: | Line 46: | ||
* 1-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''d''<sub>1</sub>/''d''<sub>2</sub> with steps ''d''<sub>1</sub>/''n''<sub>2</sub>-''n''<sub>2</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>2</sub>/''d''<sub>1</sub>, and its inverse | * 1-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''d''<sub>1</sub>/''d''<sub>2</sub> with steps ''d''<sub>1</sub>/''n''<sub>2</sub>-''n''<sub>2</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''d''<sub>2</sub>/''d''<sub>1</sub>, and its inverse | ||
* 1-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub> with steps ''d''<sub>1</sub>/''n''<sub>2</sub>-''n''<sub>2</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>2</sub>/''d''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>. | * 1-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>-''n''<sub>1</sub>/''d''<sub>2</sub>-''n''<sub>2</sub>/''d''<sub>1</sub> with steps ''d''<sub>1</sub>/''n''<sub>2</sub>-''n''<sub>2</sub>/''n''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>2</sub>-''d''<sub>2</sub>/''d''<sub>1</sub>-''d''<sub>1</sub>/''n''<sub>1</sub>. | ||
=== Defective === | === Defective === | ||
Defective pattern 1 is where some of these chords turn out essentially just. [[Ptolemismic chords]] are of this category, as it only has a palindromic triad, two pairs of inversely related tetrads, and a pair of inversely related pentads. | Defective pattern 1 is where some of these chords turn out essentially just. [[Ptolemismic chords]] are of this category, as it only has a palindromic triad, two pairs of inversely related tetrads, and a pair of inversely related pentads. | ||
== Pattern 2 == | |||
Pattern 2 turns up for commas of the form (''n''<sub>1</sub>''n''<sub>2</sub>''n''<sub>3</sub>)/(''d''<sub>1</sub><sup>2</sup>''d''<sub>2</sub>), or (''n''<sub>1</sub>''n''<sub>2</sub><sup>2</sup>)/(''d''<sub>1</sub>''d''<sub>2</sub>''d''<sub>3</sub>) up to [[octave equivalence]]. It contains three inversely related pairs of triads, three palindromic tetrads and six inversely related pairs of tetrads, and three inversely related pair of pentads, for a total of 27 distinct chord structures. | |||
Notable examples of this pattern are [[keenanismic chords]], [[werckismic chords]], and [[swetismic chords]]. |