|
|
Line 9: |
Line 9: |
| The most common way to produce a fractional-octave temperament is through an excellent approximation of an interval relative to the size of the wireframe edo. For example, [[compton family]] tempers out the Pythagorean comma and maps 7 steps of 12edo to [[3/2]]. Likewise, a lot of 10th-octave temperaments have a [[13/8]] as 7\10, and 26th-octave temperaments often have a [[7/4]] for 21\26. | | The most common way to produce a fractional-octave temperament is through an excellent approximation of an interval relative to the size of the wireframe edo. For example, [[compton family]] tempers out the Pythagorean comma and maps 7 steps of 12edo to [[3/2]]. Likewise, a lot of 10th-octave temperaments have a [[13/8]] as 7\10, and 26th-octave temperaments often have a [[7/4]] for 21\26. |
|
| |
|
| == Temperament collections == | | == Individual pages of temperaments by equal division == |
| | |
| | === 2 to 40 === |
| | Many pages are yet to be created. |
| | {| class="wikitable" |
| | |+ |
| | | |
| | |2 |
| | |3 |
| | |4 |
| | |5 |
| | |6 |
| | |7 |
| | |8 |
| | |9 |
| | |10 |
| | |- |
| | |11 |
| | |12 |
| | |13 |
| | |14 |
| | |15 |
| | |16 |
| | |17 |
| | |18 |
| | |19 |
| | |20 |
| | |- |
| | |21 |
| | |22 |
| | |23 |
| | |24 |
| | |25 |
| | |26 |
| | |27 |
| | |28 |
| | |29 |
| | |30 |
| | |- |
| | |31 |
| | |32 |
| | |33 |
| | |34 |
| | |35 |
| | |36 |
| | |37 |
| | |38 |
| | |39 |
| | |40 |
| | |} |
| | |
| | === 40 and up === |
| | 41, 44, 53*, 56, 60, 61, 65, 80, 91, 111, 118 |
| | |
| | == Temperaments discussed elsewhere == |
| Temperaments discussed as a part of a commatic family, or otherwise in temperament lists unrelated to fractional-octave theory include: | | Temperaments discussed as a part of a commatic family, or otherwise in temperament lists unrelated to fractional-octave theory include: |
|
| |
|
Line 35: |
Line 89: |
| ** [[Landscape microtemperaments #Sextile|Sextile]] | | ** [[Landscape microtemperaments #Sextile|Sextile]] |
| ** [[Stearnsmic clan #Stearnscape|Stearnscape]] | | ** [[Stearnsmic clan #Stearnscape|Stearnscape]] |
| * [[Akjaysma|Akjaysmic temperaments]] ([[7th-octave temperaments|1\7 period]]) | | * [[Akjaysma|Akjaysmic temperaments]] (1\7 period) |
| ** [[Ragismic microtemperaments #Brahmagupta|Brahmagupta]] | | **[[Ragismic microtemperaments #Brahmagupta|Brahmagupta]] |
| ** [[Schismatic family #Septant|Septant]] | | ** [[Schismatic family #Septant|Septant]] |
| ** [[Apotome family #Whitewood|Whitewood]] | | ** [[Apotome family #Whitewood|Whitewood]] |
Line 61: |
Line 115: |
| * [[Cloudy clan #Pentadecal|Pentadecal]], [[Trienstonic clan #Quindecic|quindecic]] (1\15 period) | | * [[Cloudy clan #Pentadecal|Pentadecal]], [[Trienstonic clan #Quindecic|quindecic]] (1\15 period) |
| * [[Ragismic microtemperaments #Octoid|Hexadecoid]], [[Jubilismic clan #Sedecic|sedecic]] (1\16 period) | | * [[Ragismic microtemperaments #Octoid|Hexadecoid]], [[Jubilismic clan #Sedecic|sedecic]] (1\16 period) |
| * [[Ragismic microtemperaments #Chlorine|Chlorine]] ([[17th-octave temperaments|1\17 period]]) | | * [[Ragismic microtemperaments #Chlorine|Chlorine]] (1\17 period) |
| * [[Ragismic microtemperaments #Ennealimmal|Hemiennealimmal]] (1\18 period) | | * [[Ragismic microtemperaments #Ennealimmal|Hemiennealimmal]] (1\18 period) |
| * [[Ragismic microtemperaments #Enneadecal|Enneadecal]], [[Meantone family #Meanmag|meanmag]] (1\19 period) | | * [[Ragismic microtemperaments #Enneadecal|Enneadecal]], [[Meantone family #Meanmag|meanmag]] (1\19 period) |
| * [[Hemimage temperaments #Degrees|Degrees]] ([[20th-octave temperaments|1\20 period]]) | | * [[Hemimage temperaments #Degrees|Degrees]] (1\20 period) |
| * [[Akjayland]] ([[21st-octave temperaments|1\21 period]]) | | * [[Akjayland]] (1\21 period) |
| * [[Porwell temperaments #Hendecatonic|Icosidillic]] ([[22nd-octave temperaments|1\22 period]]) | | * [[Porwell temperaments #Hendecatonic|Icosidillic]] (1\22 period) |
| * [[Porwell temperaments #Icositritonic|Icositritonic]] (1\23 period) | | * [[Porwell temperaments #Icositritonic|Icositritonic]] (1\23 period) |
| * [[Compton family #Hours|Hours]], [[chromium]] (1\24 period) | | * [[Compton family #Hours|Hours]], [[chromium]] (1\24 period) |
| * [[26th-octave temperaments|Bosonic]] ([[26th-octave temperaments|1\26 period]])
| |
| * [[Ragismic microtemperaments #Ennealimmal|Trinealimmal]], [[Tritrizo clan #Cobalt|cobalt]] (1\27 period) | | * [[Ragismic microtemperaments #Ennealimmal|Trinealimmal]], [[Tritrizo clan #Cobalt|cobalt]] (1\27 period) |
| * [[Horwell temperaments #Oquatonic|Oquatonic]] (1\28 period) | | * [[Horwell temperaments #Oquatonic|Oquatonic]] (1\28 period) |
| * [[Hemifamity temperaments #Mystery|Mystery]], [[Copper comma|copper]] ([[29th-octave temperaments|1\29 period]]) | | * [[Hemifamity temperaments #Mystery|Mystery]], [[Copper comma|copper]] (1\29 period) |
| * [[31st-octave temperaments|Birds]] (1\31 period) | | * [[31st-octave temperaments|Birds]] (1\31 period) |
| * [[Windrose]], [[bezique]] ([[32nd-octave temperaments|1\32 period]])
| |
| * Bromine, tritonopod ([[35th-octave temperaments|1\35 period]])
| |
| * [[Compton family #Decades|Decades]] (1\36 period) | | * [[Compton family #Decades|Decades]] (1\36 period) |
| * Rubidium, dzelic ([[37th-octave temperaments|1\37 period]]) | | * Rubidium, dzelic (1\37 period) |
| * [[Ragismic microtemperaments #Enneadecal|Hemienneadecal]], [[semihemienneadecal]] (1\38 period) | | * [[Ragismic microtemperaments #Enneadecal|Hemienneadecal]], [[semihemienneadecal]] (1\38 period) |
| * [[Counterpyth family|Counterpyth temperaments]], [[niobium]] (1\41 period) | | * [[Counterpyth family|Counterpyth temperaments]], [[niobium]] (1\41 period) |
Line 83: |
Line 134: |
| * [[Ragismic microtemperaments #Palladium|Palladium]] (1\46 period) | | * [[Ragismic microtemperaments #Palladium|Palladium]] (1\46 period) |
| * [[Mercator family|Mercator temperaments]] (1\53 period) | | * [[Mercator family|Mercator temperaments]] (1\53 period) |
| * [[60th-octave temperaments|Minutes, magnetic temperaments]] (1\60 period)
| |
| * [[Compton family #Omicronbeta|Omicronbeta]], [[The Flashmob#Hafnium|hafnium]] (1\72 period) | | * [[Compton family #Omicronbeta|Omicronbeta]], [[The Flashmob#Hafnium|hafnium]] (1\72 period) |
| * [[The Flashmob#Iridium|Iridium]] (1\77 period) | | * [[The Flashmob#Iridium|Iridium]] (1\77 period) |
| * [[Parkleiness temperaments #Octogintic|Octogintic]], mercury, tetraicosic ([[80th-octave temperaments|1\80 period]]) | | * [[Parkleiness temperaments #Octogintic|Octogintic]], (1\80 period) |
| * [[Stearnsmic clan #Garistearn|Garistearn]] (1\94 period) | | * [[Stearnsmic clan #Garistearn|Garistearn]] (1\94 period) |
| * [[Tritrizo clan #Undecentic|Undecentic]] (1\99 period) | | * [[Tritrizo clan #Undecentic|Undecentic]] (1\99 period) |
| * Parakleischis, oganesson ([[118th-octave temperaments|1\118 period]])
| |
| * [[Tritrizo clan #Schisennealimmal|Schisennealimmal]] (1\171 period) | | * [[Tritrizo clan #Schisennealimmal|Schisennealimmal]] (1\171 period) |
| * [[Tritrizo clan #Lunennealimmal|Lunennealimmal]] (1\441 period) | | * [[Tritrizo clan #Lunennealimmal|Lunennealimmal]] (1\441 period) |
| == 44th-octave temperaments ==
| |
| One step of 44edo is very close to the septimal comma, [[64/63]]. The relationship is preserved even up thousands of edos.
| |
|
| |
| === Ruthenium ===
| |
| Ruthenium is named after the 44th element, and can be expressed as the 1848 & 2684 temperament.
| |
|
| |
| [[Subgroup]]: 2.3.5.7
| |
|
| |
| [[Comma list]]: {{monzo| -8 23 -5 -6 }}, {{monzo| 51 -13 -1 -10 }}
| |
|
| |
| [[Mapping]]: [{{val| 44 0 -386 263 }}, {{val| 0 1 7 -2 }}]
| |
|
| |
| Mapping generators: ~64/63, ~3
| |
|
| |
| [[Optimal tuning]] ([[CTE]]): ~3/2 = 701.9420
| |
|
| |
| {{Optimal ET sequence|legend=1| 176, 660, 836, 1848, 2684, 4532, 19976, 24508, 29040, 33572 }}
| |
|
| |
| [[Badness]]: 0.111
| |
|
| |
| ==== 11-limit ====
| |
| Subgroup: 2.3.5.7.11
| |
|
| |
| Comma list: 9801/9800, 1771561/1771470, 67110351/67108864
| |
|
| |
| Mapping: [{{val| 44 0 -386 263 -57 }}, {{val| 0 1 7 -2 3 }}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.9429
| |
|
| |
| Optiml GPV sequence: {{Optimal ET sequence| 176, 660, 836, 1848, 2684, 4532, 15444, 19976e }}
| |
|
| |
| Badness: 0.0209
| |
|
| |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
| Comma list: 9801/9800, 196625/196608, 823680/823543, 1771561/1771470
| |
|
| |
| Mapping: [{{val| 44 0 -386 263 -57 1976 }}, {{val| 0 1 7 -2 3 -26 }}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.939
| |
|
| |
| Optiml GPV sequence: {{Optimal ET sequence| 836, 1848, 2684, 7216, 9900, 12584 }}
| |
|
| |
| Badness: 0.0396
| |
|
| |
| == 56th-octave temperaments ==
| |
| === Barium ===
| |
| One step of 56edo is close to a syntonic comma. Named after the 56th element, barium tempers out the {{monzo| -225 224 -56 }} comma, which sets 56 syntonic commas equal to the octave. It can be expressed as the 224 & 2072 temperament.
| |
|
| |
| [[Subgroup]]: 2.3.5
| |
|
| |
| [[Comma list]]: {{monzo| -225 224 -56 }}
| |
|
| |
| [[Mapping]]: [{{val| 56 0 -225 }}, {{val| 0 1 4 }}]
| |
|
| |
| Mapping generators: ~81/80, ~3
| |
|
| |
| [[Optimal tuning]] ([[CTE]]): ~3/2 = 701.9379
| |
|
| |
| {{Optimal ET sequence|legend=1| 224, 1176, 1400, 1624, 1848, 2072, 5992, 8064, 26264, 34328b, 42392b }}
| |
|
| |
| [[Badness]]: 4.70
| |
|
| |
| ==== 7-limit ====
| |
| [[Subgroup]]: 2.3.5.7
| |
|
| |
| [[Comma list]]: {{monzo| -12 29 -11 -3 }}, {{monzo| 47 -7 -7 -7 }}
| |
|
| |
| [[Mapping]]: [{{val| 56 0 -225 601 }}, {{val| 0 1 4 -5 }}]
| |
|
| |
| [[Optimal tuning]] ([[CTE]]): ~3/2 = 701.9433
| |
|
| |
| {{Optimal ET sequence|legend=1| 224, 1176, 1400, 1624, 1848, 2072, 5768, 7616, 17080, 24696cd }}
| |
|
| |
| [[Badness]]: 0.227
| |
|
| |
| ==== 11-limit ====
| |
| Subgroup: 2.3.5.7.11
| |
|
| |
| Comma list: 9801/9800, 1019215872/1019046875, 14765025303/14763950080
| |
|
| |
| Mapping: [{{val| 56 0 -225 601 460 }}, {{val| 0 1 4 -5 -3 }}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.9431
| |
|
| |
| {{Optimal ET sequence|legend=1| 224, 1176, 1400, 1624, 1848, 3920, 5768, 7616, 21000cd, 28616cd }}
| |
|
| |
| Badness: 0.0345
| |
|
| |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
| Comma list: 4225/4224, 9801/9800, 67392/67375, 26802913280/26795786661
| |
|
| |
| Mapping: [{{val| 56 0 -225 601 460 651}}, {{val| 0 1 4 -5 -3 -5}}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.9431
| |
|
| |
| {{Optimal ET sequence|legend=1| 224, 1848, 2072}}, ...
| |
|
| |
| == 61st-octave temperaments ==
| |
| === Promethium ===
| |
| Promethium tempers out the [[dipromethia]] and can be described as the 183 & 2684 temperament. By tempering out 4100625/4100096 promethium identifies the diaschisma with [[2025/2002]] in the 13-limit and also in the 17-limit.
| |
|
| |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
| Comma list: 10648/10647, 196625/196608, 4100625/4100096, 204800000/204788493
| |
|
| |
| Mapping: [{{val|61 0 335 703 66 -161}}, {{val|0 2 -4 -11 3 8}}]
| |
|
| |
| Mapping generators: ~2025/2002 = 1\61, ~6875/3969 = 950.970
| |
|
| |
| Optimal tuning (CTE): ~6875/3969 = 950.970
| |
| ==== 17-limit ====
| |
|
| |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
| Comma list: 14400/14399, 37180/37179, 121875/121856, 140800/140777, 3536379/3536000
| |
|
| |
| Mapping: [{{val|61 0 335 703 66 -161 201}}, {{val|0 2 -4 -11 3 8 1}}]
| |
|
| |
| Mapping generators: ~2025/2002 = 1\61, ~11907/6875 = 950.970
| |
|
| |
| Optimal tuning (CTE): ~11907/6875 = 950.970
| |
|
| |
| {{Optimal ET sequence|legend=1|183, 2684}}, ...
| |
|
| |
| == 65th-octave temperaments ==
| |
| [[65edo]] is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.
| |
|
| |
| === Terbium ===
| |
| The name of terbium temperament comes from Terbium, the 65th element.
| |
|
| |
| [[Subgroup]]: 2.3.5.7
| |
|
| |
| [[Comma list]]: 32805/32768, 78732/78125
| |
|
| |
| [[Mapping]]: [{{val| 65 103 151 0 }}, {{val| 0 0 0 1 }}]
| |
|
| |
| Mapping generators: ~81/80, ~7
| |
|
| |
| [[Optimal tuning]] ([[POTE]]): ~7/4 = 969.1359
| |
|
| |
| {{Optimal ET sequence|legend=1| 65, 130 }}
| |
|
| |
| [[Badness]]: 0.169778
| |
|
| |
| ==== 11-limit ====
| |
| Subgroup: 2.3.5.7.11
| |
|
| |
| Comma list: 243/242, 4000/3993, 5632/5625
| |
|
| |
| Mapping: [{{val| 65 103 151 0 225 }}, {{val| 0 0 0 1 0 }}]
| |
|
| |
| Optimal tuning (POTE): ~7/4 = 969.5715
| |
|
| |
| {{Optimal ET sequence|legend=1| 65d, 130 }}
| |
|
| |
| Badness: 0.059966
| |
|
| |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
| Comma list: 243/242, 351/350, 2080/2079, 3584/3575
| |
|
| |
| Mapping: [{{val| 65 103 151 0 225 58 }}, {{val| 0 0 0 1 0 1 }}]
| |
|
| |
| Optimal tuning (POTE): ~7/4 = 969.9612
| |
|
| |
| {{Optimal ET sequence|legend=1| 65d, 130 }}
| |
|
| |
| Badness: 0.036267
| |
| == 91st-octave temperaments ==
| |
| === Protactinium ===
| |
| Protactinium is described as the 364 & 1547 temperament and named after the 91st element.
| |
|
| |
| Subgroup: 2.3.5.7
| |
|
| |
| Comma list: {{monzo|47 -7 -7 -7}}, {{monzo|-2 -25 1 14}}
| |
|
| |
| Mapping: [{{val| 91 0 644 -33 1036}}, {{val| 0 1 -3 -2 -5}}]
| |
|
| |
| : mapping generators: ~1728/1715, ~3
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.991
| |
|
| |
| [[Support]]ing [[ET]]s: {{EDOs|364, 819, 1183, 1547, 1911, 2730, 3094, 3913, 4277}}
| |
|
| |
| ==== 11-limit ====
| |
| Subgroup: 2.3.5.7.11
| |
|
| |
| Comma list: 234375/234256, 26214400/26198073, 514714375/514434888
| |
|
| |
| Mapping: [{{val| 91 0 644 -33 1036}}, {{val| 0 1 -3 -2 -5}}]
| |
|
| |
| : mapping generators: ~1728/1715, ~3
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 702.015
| |
|
| |
| [[Support]]ing [[ET]]s: {{EDOs|364, 819e, 1183, 1547, 1911, 2275, 2730e, 3458}}
| |
| ==== 13-limit ====
| |
|
| |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
| Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897
| |
|
| |
| Mapping: [{{val| 91 0 644 -33 1036 481 }}, {{val| 0 1 -3 -2 -5 -1 }}]
| |
|
| |
| : mapping generators: ~1728/1715, ~3
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 702.0195
| |
|
| |
| {{Optimal ET sequence|legend=1| 364, 819e, 1183, 1547 }}
| |
|
| |
| Badness: 0.0777
| |
|
| |
| ==== 17-limit ====
| |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
| Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384
| |
|
| |
| Mapping: [{{val| 91 0 644 -33 1036 481 -205 }}, {{val| 0 1 -3 -2 -5 -1 4 }}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 702.0269
| |
|
| |
| {{Optimal ET sequence|legend=1| 364, 1183, 1547, 1911 }}
| |
|
| |
| Badness: 0.0582
| |
|
| |
| == 111th-octave temperaments ==
| |
|
| |
| === Roentgenium ===
| |
| Roentgenium is defined as 4884 & 8103 in the 19-limit and is named after the 111th element. 111 is 37 x 3, and what's particularly remarkable about this temperament is that it still preserves the relationship of 11/8 to 37edo in EDOs the size of thousands. Developed for a musical composition in [[8103edo]] by Eliora.
| |
|
| |
| Subgroup: 2.3.5.7.11
| |
|
| |
| Comma list: {{monzo|-25 -12 -3 12 5}}, {{monzo|-27 27 0 3 -7}}, {{monzo|26 -8 -2 8 -9}}
| |
|
| |
| Mapping: [{{val|111 111 2855 896 384}}, {{val|0 1 -40 -9 0}}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.964
| |
|
| |
| ==== 19-limit ====
| |
| Subgroup: 2.3.5.7.11.13.17.19
| |
|
| |
| Comma list: 31213/31212, 486400/486387, 633556/633555, 653429/653400, 1037232/1037153, 9714446/9713275, 24764600/24762387
| |
|
| |
| Mapping: [{{val|111 111 2855 896 384 410 452 472}}, {{val|0 1 -40 -9 0 -11 -25 7}}]
| |
|
| |
| Optimal tuning (CTE): ~3/2 = 701.9...
| |
|
| |
| {{Optimal ET sequence|legend=1|3219c, 4884, 8103, 12987}}, ...
| |
|
| |
|
| |
|
| |
| [[Category:Temperament collections]] | | [[Category:Temperament collections]] |
| [[Category:Rank 2]]
| |
| [[Category:Lists of temperaments]] | | [[Category:Lists of temperaments]] |