Fractional-octave temperaments: Difference between revisions

Eliora (talk | contribs)
link to page for 1\29
Eliora (talk | contribs)
118th-octave temperaments: move all that to its own page
Line 312: Line 312:
{{Optimal ET sequence|legend=1|3219c, 4884, 8103, 12987}}, ...
{{Optimal ET sequence|legend=1|3219c, 4884, 8103, 12987}}, ...


== 118th-octave temperaments ==
[[118edo]] is accurate for harmonics 3 and 5, so various 118th-octave temperaments actually make sense.


=== Parakleischis ===
118edo and its multiples are members of both [[parakleismic]] and [[Schismatic family|schismic]], and from this it derives its name.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 32805/32768, 1224440064/1220703125
[[Mapping]]: [{{val| 118 187 274 0 }}, {{val| 0 0 0 1 }}]
Mapping generators: ~15625/15552, ~7
[[Optimal tuning]] ([[POTE]]): ~7/4 = 968.7235
{{Optimal ET sequence|legend=1| 118, 236, 354, 472, 2242, 2714b, 3186b, 3658b }}
[[Badness]]: 0.145166
==== 11-limit ====
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 32805/32768, 137781/137500
Mapping: [{{val| 118 187 274 0 77 }}, {{val| 0 0 0 1 1 }}]
Optimal tuning (POTE): ~7/4 = 968.5117
{{Optimal ET sequence|legend=1| 118, 354, 472 }}
Badness: 0.049316
==== Centenniamajor ====
Named after the fact that 18 is the age of majority in most countries, and 100 (centennial) + 18 (major) = 118.
Subgroup: 2.3.5.7.11
Comma list: 32805/32768, 151263/151250, 1224440064/1220703125
Mapping: [{{val| 118 187 274 0 -420 }}, {{val| 0 0 0 2 5 }}]
Mapping generators: ~15625/15552, ~405504/153125
Optimal tuning (CTE): ~202752/153125 = 484.4837
{{Optimal ET sequence|legend=1| 354, 944e, 1298 }}
Badness: 0.357
===== 13-limit =====
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 32805/32768, 34398/34375, 384912/384475
Mapping: [{{val| 118 187 274 0 -420 271 }}, {{val| 0 0 0 2 5 1 }}]
Optimal tuning (CTE): ~8125/6144 = 484.4867
{{Optimal ET sequence|legend=1| 354, 944e, 1298 }}
Badness: 0.122
=== Oganesson ===
Named after the 118th element. In the 13-limit, the period corresponds to [[169/168]], and in the 17-limit, it corresponds also to [[170/169]], meaning that [[28561/28560]] is tempered out. As opposed to being an extension of parakleischis, this has the generator that splits the third harmonic into three equal parts.
In the 7-limit and 11-limit, the period corresponds to [[bronzisma]].
[[Subgroup]]: 2.3.5.7
[[Comma list]]: {{monzo| 30 10 -27 6 }}, {{monzo| 77 -20 -5 -12 }}
[[Mapping]]: [{{val| 118 0 274 643 }}, {{val| 0 3 0 -5 }}]
Mapping generators: ~2097152/2083725, ~1953125/1354752
[[Optimal tuning]] ([[CTE]]): ~1953125/1354752 = 634.0068
{{Optimal ET sequence|legend=1| 354, 2360, 2714, 3068, 3442, 3776, 7198cd, 10974bccdd }}
[[Badness]]: 2.66
==== 11-limit ====
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, {{monzo| 13 -1 4 -16 7 }}, {{monzo| 55 -7 -15 -2 -1 }}
Mapping: [{{val| 118 0 274 643 1094 }}, {{val| 0 3 0 -5 -11 }}]
Optimal tuning (CTE): ~1953125/1354752 = 634.0085
{{Optimal ET sequence|legend=1| 354, 3068e, 3442, 3776, 11682ccdde }}
Badness: 0.568
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 9801/9800, 537403776/537109375, 453874312332/453857421875
Mapping: [{{val| 118 0 274 643 1094 499}}, {{val| 0 3 0 -5 -11 -1}}]
Mapping generators: ~169/168, ~1124864/779625
Optimal tuning (CTE): ~1124864/779625 = 634.0087
{{Optimal ET sequence|legend=1| 354, 3068e, 3422, 3776 }}
Badness: 0.172
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 9801/9800, 34391/34375, 361250/361179, 562432/562275
Mapping:  [{{val| 118 0 274 643 1094 499 607 }}, {{val| 0 3 0 -5 -11 -1 2 }}]
Mapping generators: ~170/169, ~238/165
Optimal tuning (CTE): ~238/165 = 634.0080
{{Optimal ET sequence|legend=1| 354, 3068e, 3422, 3776 }}
Badness: 0.105


[[Category:Temperament collections]]
[[Category:Temperament collections]]
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Lists of temperaments]]
[[Category:Lists of temperaments]]