Dyadic chord: Difference between revisions

m Recategorize
m De-confuse
Line 1: Line 1:
: ''Not to be confused with [[dyad]].''
== Definitions ==
== Definitions ==
By a '''dyadic chord''' is meant a chord each of whose intervals belongs to a specified set of intervals considered to be consonant; it is therefore relative to the set of intervals in question. By a ''just'' dyadic chord is meant a chord in rational intonation which is dyadic, so that each of its notes in relation to the lowest note is a rational number belonging to the set of consonances, and moreover each interval between the notes belongs to the set of consonances. By an ''essentially just'' dyadic chord is meant a chord which is considered to be an approximation of a just dyadic chord, such that each of its intervals is considered to be an approximation of the corresponding interval in the just dyadic chord. So, for instance, [[Ratios|1-5/4-3/2]] is a just dyadic chord when the consonance set is the [[5-odd-limit]] diamond with [[octave equivalence]], and 0-10-18 in 31edo with consonance set {8, 10, 13, 18, 21, 23, 31} modulo 31 is an essentially just dyadic chord approximating 1-5/4-3/2.
By a '''dyadic chord''' is meant a chord each of whose intervals belongs to a specified set of intervals considered to be consonant; it is therefore relative to the set of intervals in question. By a ''just'' dyadic chord is meant a chord in rational intonation which is dyadic, so that each of its notes in relation to the lowest note is a rational number belonging to the set of consonances, and moreover each interval between the notes belongs to the set of consonances. By an ''essentially just'' dyadic chord is meant a chord which is considered to be an approximation of a just dyadic chord, such that each of its intervals is considered to be an approximation of the corresponding interval in the just dyadic chord. So, for instance, [[Ratios|1-5/4-3/2]] is a just dyadic chord when the consonance set is the [[5-odd-limit]] diamond with [[octave equivalence]], and 0-10-18 in 31edo with consonance set {8, 10, 13, 18, 21, 23, 31} modulo 31 is an essentially just dyadic chord approximating 1-5/4-3/2.
Line 92: Line 94:
* [[Essential tempering comma]]
* [[Essential tempering comma]]


[[Category:Terms]]
[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]
[[Category:Dyadic chords| ]] <!-- main article -->
[[Category:Dyadic chords| ]] <!-- main article -->