Generator-offset property: Difference between revisions

Inthar (talk | contribs)
Tags: Mobile edit Mobile web edit
Inthar (talk | contribs)
Tags: Mobile edit Mobile web edit
Line 77: Line 77:
For (3), we now only need to see that if ''S'' has an odd number of notes and is SGA, ''S'' is abstractly SV3. But the argument in case 2 above works when you substitute any interval class in ''S'' instead of a 1-step (abstract SV3 wasn't used), hence any interval class comes in (abstractly) exactly 3 sizes.  
For (3), we now only need to see that if ''S'' has an odd number of notes and is SGA, ''S'' is abstractly SV3. But the argument in case 2 above works when you substitute any interval class in ''S'' instead of a 1-step (abstract SV3 wasn't used), hence any interval class comes in (abstractly) exactly 3 sizes.  


For (4), assume ''S'' is ''a''X ''b''Y ''b''Z, a odd. If ''b'' = 1, there's nothing to prove. So assume ''b'' > 1. Suppose for the sake of contradiction that Y′s and Z′s don't alternate perfectly, i.e. YX<sup>''t''</sup>Y (for some ''t'' &ge; 0) occurs in ''S''. Assume that the perfect generator of ''a''X 2''b''W is ''i''X + ''j''W with ''j'' ≥ 2. (If ''j'' = 1, we can invert the generator to make ''j'' ≥ 2, since ''b'' > 1.)
For (4), assume ''S'' is ''a''X ''b''Y ''b''Z, a odd. If ''b'' = 1, there's nothing to prove. So assume ''b'' > 1. Suppose for the sake of contradiction that Y′s and Z′s don't alternate perfectly, i.e. YX<sup>''t''</sup>Y (for some ''t'' &ge; 0) occurs in ''S''.  
 
[correction pending]
<!--Assume that the perfect generator of ''a''X 2''b''W is ''i''X + ''j''W with ''j'' ≥ 2. (If ''j'' = 1, we can invert the generator to make ''j'' ≥ 2, since ''b'' > 1.)


In ''S'', (''i'' + ''j'')-steps (representing the generator) are always one of the following:
In ''S'', (''i'' + ''j'')-steps (representing the generator) are always one of the following:
Line 86: Line 89:
Since ''a'' + 2''b'' ≥ 5, there are at least 4 perfect generators, so there must be at least one of each of (a), (b), and (c), giving a contradiction to SV3. [Whenever the root of the (''i'' + ''j'')-step are moved within ''S'', the numbers of Y's and Z's change one at a time and reach a maximum at some choice of the root and a minimum with another choice, guaranteeing that intermediate values are reached. We can use this "intermediate value theorem" argument because (d) occurs at only one note.]
Since ''a'' + 2''b'' ≥ 5, there are at least 4 perfect generators, so there must be at least one of each of (a), (b), and (c), giving a contradiction to SV3. [Whenever the root of the (''i'' + ''j'')-step are moved within ''S'', the numbers of Y's and Z's change one at a time and reach a maximum at some choice of the root and a minimum with another choice, guaranteeing that intermediate values are reached. We can use this "intermediate value theorem" argument because (d) occurs at only one note.]


Any generator of ''a''X 2''b''W must have an odd number of W steps (Otherwise, intervals with an odd number of W steps can't be generated.). We have finished proving (4).
Any generator of ''a''X 2''b''W must have an odd number of W steps (Otherwise, intervals with an odd number of W steps can't be generated.). We have finished proving (4).-->


For (5), odd-numbered SGA scales are [[Fokker block]]s (in the 2-dimensional lattice generated by the generator and the offset). To see this, consider the following lattice depiction of such a scale:
For (5), odd-numbered SGA scales are [[Fokker block]]s (in the 2-dimensional lattice generated by the generator and the offset). To see this, consider the following lattice depiction of such a scale: