Generator-offset property: Difference between revisions
Tags: Mobile edit Mobile web edit |
Tags: Mobile edit Mobile web edit |
||
Line 77: | Line 77: | ||
For (3), we now only need to see that if ''S'' has an odd number of notes and is SGA, ''S'' is abstractly SV3. But the argument in case 2 above works when you substitute any interval class in ''S'' instead of a 1-step (abstract SV3 wasn't used), hence any interval class comes in (abstractly) exactly 3 sizes. | For (3), we now only need to see that if ''S'' has an odd number of notes and is SGA, ''S'' is abstractly SV3. But the argument in case 2 above works when you substitute any interval class in ''S'' instead of a 1-step (abstract SV3 wasn't used), hence any interval class comes in (abstractly) exactly 3 sizes. | ||
For (4), assume ''S'' is ''a''X ''b''Y ''b''Z, a odd. If ''b'' = 1, there's nothing to prove. So assume ''b'' > 1. Suppose for the sake of contradiction that Y′s and Z′s don't alternate perfectly, i.e. YX<sup>''t''</sup>Y (for some ''t'' ≥ 0) occurs in ''S''. Assume that the perfect generator of ''a''X 2''b''W is ''i''X + ''j''W with ''j'' ≥ 2. (If ''j'' = 1, we can invert the generator to make ''j'' ≥ 2, since ''b'' > 1.) | For (4), assume ''S'' is ''a''X ''b''Y ''b''Z, a odd. If ''b'' = 1, there's nothing to prove. So assume ''b'' > 1. Suppose for the sake of contradiction that Y′s and Z′s don't alternate perfectly, i.e. YX<sup>''t''</sup>Y (for some ''t'' ≥ 0) occurs in ''S''. | ||
[correction pending] | |||
<!--Assume that the perfect generator of ''a''X 2''b''W is ''i''X + ''j''W with ''j'' ≥ 2. (If ''j'' = 1, we can invert the generator to make ''j'' ≥ 2, since ''b'' > 1.) | |||
In ''S'', (''i'' + ''j'')-steps (representing the generator) are always one of the following: | In ''S'', (''i'' + ''j'')-steps (representing the generator) are always one of the following: | ||
Line 86: | Line 89: | ||
Since ''a'' + 2''b'' ≥ 5, there are at least 4 perfect generators, so there must be at least one of each of (a), (b), and (c), giving a contradiction to SV3. [Whenever the root of the (''i'' + ''j'')-step are moved within ''S'', the numbers of Y's and Z's change one at a time and reach a maximum at some choice of the root and a minimum with another choice, guaranteeing that intermediate values are reached. We can use this "intermediate value theorem" argument because (d) occurs at only one note.] | Since ''a'' + 2''b'' ≥ 5, there are at least 4 perfect generators, so there must be at least one of each of (a), (b), and (c), giving a contradiction to SV3. [Whenever the root of the (''i'' + ''j'')-step are moved within ''S'', the numbers of Y's and Z's change one at a time and reach a maximum at some choice of the root and a minimum with another choice, guaranteeing that intermediate values are reached. We can use this "intermediate value theorem" argument because (d) occurs at only one note.] | ||
Any generator of ''a''X 2''b''W must have an odd number of W steps (Otherwise, intervals with an odd number of W steps can't be generated.). We have finished proving (4). | Any generator of ''a''X 2''b''W must have an odd number of W steps (Otherwise, intervals with an odd number of W steps can't be generated.). We have finished proving (4).--> | ||
For (5), odd-numbered SGA scales are [[Fokker block]]s (in the 2-dimensional lattice generated by the generator and the offset). To see this, consider the following lattice depiction of such a scale: | For (5), odd-numbered SGA scales are [[Fokker block]]s (in the 2-dimensional lattice generated by the generator and the offset). To see this, consider the following lattice depiction of such a scale: |