Generator-offset property: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
Line 76: Line 76:
(The above holds for any odd ''n'' ≥ 3.)
(The above holds for any odd ''n'' ≥ 3.)


For (1), we now only need to see that SGA + odd length => abstractly SV3. But the argument in case 2 above works for any interval class (abstract SV3 wasn't used), hence any interval class comes in (abstractly) exactly 3 sizes regardless of tuning.  
For (1), we now only need to see that if ''S'' has an odd number of notes and is SGA, ''S'' is abstractly SV3. But the argument in case 2 above works when you substitute any interval class in ''S'' instead of a 1-step (abstract SV3 wasn't used), hence any interval class comes in (abstractly) exactly 3 sizes.  


For (4), assume ''S'' is ''a''X ''b''Y ''b''Z, a odd. If ''b'' = 1, there's nothing to prove. So assume ''b'' > 1. Suppose for the sake of contradiction that Y′s and Z′s don't alternate perfectly. Assume that the perfect generator of ''a''X 2''b''W is ''i''X + ''j''W with ''j'' ≥ 2. (If ''j'' = 1, we can invert the generator to make ''j'' ≥ 2, since ''b'' > 1.)
For (4), assume ''S'' is ''a''X ''b''Y ''b''Z, a odd. If ''b'' = 1, there's nothing to prove. So assume ''b'' > 1. Suppose for the sake of contradiction that Y′s and Z′s don't alternate perfectly. Assume that the perfect generator of ''a''X 2''b''W is ''i''X + ''j''W with ''j'' ≥ 2. (If ''j'' = 1, we can invert the generator to make ''j'' ≥ 2, since ''b'' > 1.)