Generator-offset property: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
m Proof: redundant sentence
Line 134: Line 134:
We can write sizes of intervals in S as vectors (p, q, r) using the basis (a, b, c). Only two k-steps of S can project to P in S1, for if P has three preimages (α, β, γ), (α, β’, γ’), (α, β’’, γ’’) in S, then β, β’ and β’’ are three distinct values. Thus these would project to three different k-steps in S3, contradicting the mos property of S3.
We can write sizes of intervals in S as vectors (p, q, r) using the basis (a, b, c). Only two k-steps of S can project to P in S1, for if P has three preimages (α, β, γ), (α, β’, γ’), (α, β’’, γ’’) in S, then β, β’ and β’’ are three distinct values. Thus these would project to three different k-steps in S3, contradicting the mos property of S3.


So assume Q = (α, β, γ) != R = (α, β’, γ’) are the two preimages of P in S. Then I has preimage (α’, β’’, γ’’), which by abuse we also denote I. Here the values in each component differ by at most 1, and α != α’. Recall that I has preimage (α’, β’’, γ’’). Either β’’ = β or β’’ = β’. Assume β’’ = β’. Then γ’’ = γ. The cyclic words Λ1 = the pattern of α and α’, Λ2 = the pattern of β and β’, and Λ3 = the pattern of γ and γ must form mosses. By way of illustration, the chain of k-steps might look like this in S:
So assume Q = (α, β, γ) R = (α, β’, γ’) are the two preimages of P in S. Then I has preimage (α’, β’’, γ’’), which by abuse we also denote I. Here the values in each component differ by at most 1, and α α’. Either β’’ = β or β’’ = β’. Assume β’’ = β’. Then γ’’ = γ. The cyclic words Λ1 = the pattern of α and α’, Λ2 = the pattern of β and β’, and Λ3 = the pattern of γ and γ must form mosses. By way of illustration, the chain of k-steps might look like this in S:


       1 2 3 4  5 6 7 8 9
       1 2 3 4  5 6 7 8 9
Line 160: Line 160:
We have three cases to consider:
We have three cases to consider:


Case 1: Λ2 is the mos (n-2)β 2β’.
Case 1: Λ2 is the mos (n − 2)β 2β’.


For Λ2 to be a mos, the first occurrence of R must be at either f = floor(n/2) or ceil(n/2). We may assume that it is at f; otherwise flip the chain and reindex the words to start at 2f.
For Λ2 to be a mos, the first occurrence of R must be at either f = floor(n/2) or ceil(n/2). We may assume that it is at f; otherwise flip the chain and reindex the words to start at 2f.