Generator-offset property: Difference between revisions
→Proof: clarify and update according to correction Tags: Mobile edit Mobile web edit |
Tags: Mobile edit Mobile web edit |
||
Line 127: | Line 127: | ||
Assume that S2's generator is also a k-step, and that Σ2's I is located at index n. Then Σ1 and Σ2 are the same mos pattern (up to knowing the order of the step sizes) and even the same mode: | Assume that S2's generator is also a k-step, and that Σ2's I is located at index n. Then Σ1 and Σ2 are the same mos pattern (up to knowing the order of the step sizes) and even the same mode: | ||
S1: L ... L s | |||
S1: L ... L s | S2: L' ... L' s' | ||
S2: | |||
Assume the L of S1 (it could be s, but it doesn’t matter) is the result of identifying b and c, and all instances of s in S1 come from a. Then the steps of S2 corresponding to the L of S1 must be either all b’s or all a~c’s, thus these steps are all b’s in S (otherwise they would be identified with the a, against the assumption that S1 and S2 are the same mos pattern and mode). So S has only two step sizes (a and b), contradicting the assumption that S has exactly three step sizes. This shows that the maximum variety of S must be at least 3, and that P has at least two preimages in S. | Assume the L of S1 (it could be s, but it doesn’t matter) is the result of identifying b and c, and all instances of s in S1 come from a. Then the steps of S2 corresponding to the L of S1 must be either all b’s or all a~c’s, thus these steps are all b’s in S (otherwise they would be identified with the a, against the assumption that S1 and S2 are the same mos pattern and mode). So S has only two step sizes (a and b), contradicting the assumption that S has exactly three step sizes. This shows that the maximum variety of S must be at least 3, and that P has at least two preimages in S. |